3D-Printed Micro-Optofluidic Slug Flow Detector

被引:0
|
作者
Stella, Giovanna [1 ]
Saitta, Lorena [2 ]
Moscato, Samuele [1 ]
Cicala, Gianluca [2 ]
Bucolo, Maide [1 ]
机构
[1] Univ Catania, Dept Elect Elect & Comp Sci Engn, I-95125 Catania, Italy
[2] Univ Catania, Dept Civil Engn & Architecture, I-95125 Catania, Italy
关键词
Flow velocity; microfluidics; microoptics; non-Newtonian fluids; two-phase flow; FABRICATION; DEVICES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-Newtonian fluids analysis in microdevices is challenging both in biological and chemical applications. In this context, the flow velocity evaluation is crucial. This work presents a portable and disposable micro-optofluidic detector (mu OFD), in which microoptical and microfluidic components are integrated and used for the real-time characterization of a sequenced flow generated by two immiscible fluids, called slug flow. The 3D-printed approach was chosen for the device fabrication, being simple, flexible, fast, and low-cost, and for the possibility of exploring wider channel geometries as compared to soft lithography. In the micro optofluidic detector, the light interacts with the flow in two observation points, 1 mm apart from each other, placed along the microchannel at 26 mm far from the T-junction. The optical signal variations, correlated with the fluids' optical properties, were used for real-time tracking of slug frequency passage, velocity, and length by an ad hoc signal processing procedure. Two mu OFD prototypes were presented. One prototype was entirely made in poly-dimethyl-siloxane (PDMS), while in the second, the microoptical component was made of VeroClear and the microfluidic part in PDMS. Both prototypes were successfully characterized in different hydrodynamic conditions as proof of concept of their validity as flow velocity detectors. The advantage of realizing, by using a low-cost and easy-to-use fabrication process, a micro-optofluidic device that embeds the optical monitoring elements and the microchannels, without constraints on the localization of the observation point and microchannel height, opens the way to the design of a great variety of labon-a-chip (LOC) microdevices for complex fluids investigation.
引用
收藏
页码:18813 / 18826
页数:14
相关论文
共 50 条
  • [21] Towards 3D-printed organic electronics: Planarization and spray-deposition of functional layers onto 3D-printed objects
    Falco, Aniello
    Petrelli, Mattia
    Bezzeccheri, Emanuele
    Abdelhalim, Ahmed
    Lugli, Paolo
    ORGANIC ELECTRONICS, 2016, 39 : 340 - 347
  • [22] Isothermal titration calorimetry in a 3D-printed microdevice
    Jia, Yuan
    Su, Chao
    He, Maogang
    Liu, Kun
    Sun, Hao
    Lin, Qiao
    BIOMEDICAL MICRODEVICES, 2019, 21 (04)
  • [23] 3D-Printed Immunosensor Arrays for Cancer Diagnostics
    Sharafeldin, Mohamed
    Kadimisetty, Karteek
    Bhalerao, Ketki S.
    Chen, Tianqi
    Rusling, James F.
    SENSORS, 2020, 20 (16) : 1 - 23
  • [24] 3D-Printed Biosensor Arrays for Medical Diagnostics
    Sharafeldin, Mohamed
    Jones, Abby
    Rusling, James F.
    MICROMACHINES, 2018, 9 (08):
  • [25] 3D-printed microneedle arrays for drug delivery
    Li, Rong
    Zhang, Li
    Jiang, Xuebing
    Li, Li
    Wu, Shanshan
    Yuan, Xin
    Cheng, Hao
    Jiang, Xian
    Gou, Maling
    JOURNAL OF CONTROLLED RELEASE, 2022, 350 : 933 - 948
  • [26] 3D-printed microfluidic devices
    Amin, Reza
    Knowlton, Stephanie
    Hart, Alexander
    Yenilmez, Bekir
    Ghaderinezhad, Fariba
    Katebifar, Sara
    Messina, Michael
    Khademhosseini, Ali
    Tasoglu, Savas
    BIOFABRICATION, 2016, 8 (02)
  • [27] Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing
    Lepowsky, Eric
    Amin, Reza
    Tasoglu, Savas
    MICROMACHINES, 2018, 9 (10):
  • [28] 3D-printed bioanalytical devices
    Bishop, Gregory W.
    Satterwhite-Warden, Jennifer E.
    Kadimisetty, Karteek
    Rusling, James F.
    NANOTECHNOLOGY, 2016, 27 (28)
  • [29] 3D-Printed Structural Pseudocapacitors
    Liu, Xinhua
    Jervis, Rhodri
    Maher, Robert C.
    Villar-Garcia, Ignacio J.
    Naylor-Marlow, Max
    Shearing, Paul R.
    Ouyang, Mengzheng
    Cohen, Lesley
    Brandon, Nigel P.
    Wu, Billy
    ADVANCED MATERIALS TECHNOLOGIES, 2016, 1 (09):
  • [30] 3D-Printed Micro/Nano-Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges
    Su, Ruyue
    Chen, Jingyi
    Zhang, Xueqin
    Wang, Wenqing
    Li, Ying
    He, Rujie
    Fang, Daining
    SMALL, 2023, 19 (29)