Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid

被引:0
作者
Jeon, Young Un [1 ]
Chang, Ji Woong [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Dept Chem Engn, Gumi Si 39177, South Korea
[2] Dept Chem Engn, Gumi Si 39177, South Korea
来源
APPLIED CHEMISTRY FOR ENGINEERING | 2024年 / 35卷 / 02期
关键词
Sintering paste; Copper; Nanofiber; Formate; Mixture;
D O I
10.14478/ace.2024.1005
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 um grown at 400 degrees C on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 degrees C, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.
引用
收藏
页码:96 / 99
页数:4
相关论文
共 50 条
  • [21] Behavior of Adsorbed Formate in the Presence of Gaseous Formic Acid on Cu(110)
    Inoue, Kenichiro
    Wakabayashi, Fumitaka
    Domen, Kazunari
    [J]. CATALYSIS LETTERS, 2012, 142 (10) : 1197 - 1201
  • [22] An STM investigation of formic acid adsorption on oxygen precovered Cu(110)
    Poulston, S
    Jones, A
    Bennett, RA
    Bowker, M
    [J]. SURFACE SCIENCE, 1997, 377 (1-3) : 66 - 70
  • [23] A Facile One-Pot Synthesis and Enhanced Formic Acid Oxidation of Monodisperse Pd-Cu Nanocatalysts
    Park, Kyu-Hwan
    Lee, Young Wook
    Kang, Shin Wook
    Han, Sang Woo
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (06) : 1515 - 1519
  • [24] Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid
    Zhu Qing-Gong
    Sun Xiao-Fu
    Kang Xin-Chen
    Ma Jun
    Qian Qing-Li
    Han Bu-Xing
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (01) : 261 - 266
  • [25] Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study
    Sirijaraensre, J.
    Limtrakul, J.
    [J]. APPLIED SURFACE SCIENCE, 2016, 364 : 241 - 248
  • [26] A combined STM molecular beam study of formic acid oxidation on Cu(110)
    Bowker, M
    Poulston, S
    Bennett, RA
    Stone, P
    Jones, AH
    Haq, S
    Hollins, P
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1998, 131 (1-3) : 185 - 197
  • [27] Formic Acid Treatment with Pt Catalyst for Cu Direct Bonding at Low Temperature
    Suga, Tadatomo
    Masakate, Akaike
    Yang, Wenhua
    Matsuoka, Naoya
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP), 2014, : 644 - 647
  • [28] Microscopic View of the Active Sites for Selective Dehydrogenation of Formic Acid on Cu(111)
    Marcinkowski, Matthew D.
    Murphy, Colin J.
    Liriano, Melissa L.
    Wasio, Natalie A.
    Lucci, Felicia R.
    Sykes, E. Charles H.
    [J]. ACS CATALYSIS, 2015, 5 (12): : 7371 - 7378
  • [29] Theoretical study on adsorption and reaction of polymeric formic acid on the Cu(111) surface
    Putra, Septia Eka Marsha
    Muttaqien, Fahdzi
    Hamamoto, Yuji
    Inagaki, Kouji
    Shiotari, Akitoshi
    Yoshinobu, Jun
    Morikawa, Yoshitada
    Hamada, Ikutaro
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (07)
  • [30] Cu-Cu bonding using bimodal submicron-nano Cu paste and its application in die attachment for power device
    Xiao, Yu-bo
    Gao, Yue
    Liu, Zhi-Quan
    Sun, Rong
    Liu, Yang
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (16) : 12604 - 12614