Conversion of T2-Weighted Magnetic Resonance Images of Cervical Spine Trauma to Short T1 Inversion Recovery (STIR) Images by Generative Adversarial Network

被引:0
作者
Yunde, Atsushi [1 ]
Maki, Satoshi [1 ]
Furuya, Takeo [1 ]
Okimatsu, Sho [1 ]
Inoue, Takaki [1 ]
Miura, Masataka [1 ]
Shiratani, Yuki [1 ]
Nagashima, Yuki [1 ]
Maruyama, Juntaro [1 ]
Shiga, Yasuhiro [1 ]
Inage, Kazuhide [1 ]
Eguchi, Yawara [1 ]
Orita, Sumihisa [1 ]
Ohtori, Seiji [1 ]
机构
[1] Chiba Univ, Grad Sch Med, Dept Orthopaed Surg, Chiba, Japan
关键词
t2-weighted magnetic resonance images; short t1 inversion recovery; image conversion; generated adversarial network; deep learning; cervical spine trauma; magnetic resonance imaging; INJURY; MRI; CLASSIFICATION; EFFICACY;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: The short T1 inversion recovery (STIR) sequence is advantageous for visualizing ligamentous injuries, but the STIR sequence may be missing in some cases. The purpose of this study was to generate synthetic STIR images from MRI T2 -weighted images (T2WI) of patients with cervical spine trauma using a generative adversarial network (GAN). Methods: A total of 969 pairs of T2WI and STIR images were extracted from 79 patients with cervical spine trauma. The synthetic model was trained 100 times, and the performance of the model was evaluated with five -fold cross -validation. Results: As for quantitative validation, the structural similarity score was 0.519 +/- 0.1 and the peak signal-tonoise ratio score was 19.37 +/- 1.9 dB. As for qualitative validation, the incorporation of synthetic STIR images generated by a GAN alongside T2WI substantially enhances sensitivity in the detection of interspinous ligament injuries, outperforming assessments reliant solely on T2WI. Conclusion: The GAN model can generate synthetic STIRs from T2 images of cervical spine trauma using image -to -image conversion techniques. The use of a combination of synthetic STIR images generated by a GAN and T2WI improves sensitivity in detecting interspinous ligament injuries compared to assessments that use only T2WI.
引用
收藏
页数:8
相关论文
共 20 条
[1]   Time is spine: a review of translational advances in spinal cord injury [J].
Badhiwala, Jetan H. ;
Ahuja, Christopher S. ;
Fehlings, Michael G. .
JOURNAL OF NEUROSURGERY-SPINE, 2019, 30 (01) :1-18
[2]   MRI in acute and subacute post-traumatic spinal cord injury: pictorial review [J].
Chandra, J. ;
Sheerin, F. ;
de Heredia, L. Lopez ;
Meagher, T. ;
King, D. ;
Belci, M. ;
Hughes, R. J. .
SPINAL CORD, 2012, 50 (01) :2-7
[3]   Multimodal MR Synthesis via Modality-Invariant Latent Representation [J].
Chartsias, Agisilaos ;
Joyce, Thomas ;
Giuffrida, Mario Valerio ;
Tsaftaris, Sotirios A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) :803-814
[4]  
Chen Y, 2018, arXiv
[5]   Diagnostic abilities of magnetic resonance imaging in traumatic injury to the posterior ligamentous complex: the effect of years in training [J].
Crosby, Colin G. ;
Even, Jesse L. ;
Song, Yanna ;
Block, John J. ;
Devin, Clinton J. .
SPINE JOURNAL, 2011, 11 (08) :747-753
[6]   Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging [J].
Galbusera F. ;
Bassani T. ;
Casaroli G. ;
Gitto S. ;
Zanchetta E. ;
Costa F. ;
Sconfienza L.M. .
European Radiology Experimental, 2 (1)
[7]  
Goodfellow I, 2016, arXiv
[8]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[9]   Virtual magnetic resonance lumbar spine images generated from computed tomography images using conditional generative adversarial networks [J].
Gotoh, M. ;
Nakaura, T. ;
Funama, Y. ;
Morita, K. ;
Sakabe, D. ;
Uetani, H. ;
Nagayama, Y. ;
Kidoh, M. ;
Hatemura, M. ;
Masuda, T. ;
Hirai, T. .
RADIOGRAPHY, 2022, 28 (02) :447-453
[10]   Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging [J].
Haubold, Johannes ;
Demircioglu, Aydin ;
Theysohn, Jens Matthias ;
Wetter, Axel ;
Radbruch, Alexander ;
Doerner, Nils ;
Schlosser, Thomas Wilfried ;
Deuschl, Cornelius ;
Li, Yan ;
Nassenstein, Kai ;
Schaarschmidt, Benedikt Michael ;
Forsting, Michael ;
Umutlu, Lale ;
Nensa, Felix .
DIAGNOSTICS, 2021, 11 (09)