QUASI-LINEAR FRACTIONAL-ORDER OPERATORS IN LIPSCHITZ DOMAINS

被引:1
作者
Borthagaray, Juan Pablo [1 ]
Li, Wenbo [2 ]
Nochetto, Ricardo H. [3 ]
机构
[1] Univ Republica, Inst Matemat & Estadist Rafael Laguardia, Fac Ingenier, Montevideo, Uruguay
[2] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
fractional quasi-linear operators; Besov regularity; Lipschitz domains; finite element approximation; ARONSZAJN-SLOBODECKIJ NORM; BOUNDARY-ELEMENT METHODS; CABLE EQUATION MODELS; ANOMALOUS ELECTRODIFFUSION; ELLIPTIC-EQUATIONS; REGULARITY; APPROXIMATION; LOCALIZATION;
D O I
10.1137/23M1575871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Besov boundary regularity for solutions of the homogeneous Dirichlet problem for fractional -order quasi -linear operators with variable coefficients on Lipschitz domains \Omega of R d . Our estimates are consistent with the boundary behavior of solutions on smooth domains and apply to fractional p-Laplacians and operators with finite horizon. The proof exploits the underlying variational structure and uses a new and flexible local translation operator. We further apply these regularity estimates to derive novel error estimates for finite element approximations of fractional p-Laplacians and present several simulations that reveal the boundary behavior of solutions.
引用
收藏
页码:4006 / 4039
页数:34
相关论文
共 51 条
[1]   Fractional-order operators on nonsmooth domains [J].
Abels, Helmut ;
Grubb, Gerd .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (04) :1297-1350
[2]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[3]  
Adams R.A., 2003, SOBOLEV SPACES
[4]   QUANTITATIVE ESTIMATES ON LOCALIZED FINITE DIFFERENCES FOR THE FRACTIONAL POISSON PROBLEM, AND APPLICATIONS TO REGULARITY AND SPECTRAL STABILITY [J].
Akagi, Goro ;
Schimperna, Giulio ;
Segatti, Antonio ;
Spinolo, Laura, V .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (04) :913-961
[5]  
Ataei A, 2025, Arxiv, DOI arXiv:2304.03624
[6]   SIMILARITY SOLUTIONS IN SOME NONLINEAR DIFFUSION PROBLEMS AND IN BOUNDARY-LAYER FLOW OF A PSEUDO-PLASTIC FLUID [J].
ATKINSON, C ;
JONES, CW .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1974, 27 (MAY) :193-211
[7]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[8]  
Benedikt J, 2018, ELECTRON J DIFFER EQ
[9]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[10]  
Bergh J., 1976, Interpolation spaces. An introduction