A SECOND-ORDER, LINEAR, L∞ -CONVERGENT, AND ENERGY STABLE SCHEME FOR THE PHASE FIELD CRYSTAL EQUATION
被引:3
作者:
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Minist Educ, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Minist Educ, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
Li, Xiao
[1
,2
]
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Res Inst Smart Energy, Kowloon, Hong Kong, Peoples R ChinaBeijing Normal Univ, Minist Educ, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
Qiao, Zhonghua
[3
,4
]
机构:
[1] Beijing Normal Univ, Minist Educ, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Res Inst Smart Energy, Kowloon, Hong Kong, Peoples R China
phase field crystal equation;
second order;
convergence in L degrees degrees;
energy stability;
TIME DIFFERENCING SCHEMES;
NONLOCAL ALLEN-CAHN;
RUNGE-KUTTA METHODS;
NUMERICAL SCHEME;
EFFICIENT;
DYNAMICS;
1ST;
D O I:
10.1137/23M1552164
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we present a second-order accurate and linear numerical scheme for the phase field crystal equation and prove its convergence in the discrete L-infinity sense. The key ingredient of the error analysis is to justify the boundedness of the numerical solution, so that the nonlinear term, treated explicitly in the scheme, can be bounded appropriately. Benefiting from the existence of the sixth-order dissipation term in the model, we first estimate the discrete H(2 )norm of the numerical error. The error estimate in the supremum norm is then obtained by the Sobolev embedding, so that the uniform bound of the numerical solution is available. We also show the mass conservation and the energy stability in the discrete setting. The proposed scheme is linear with constant coefficients so that it can be solved efficiently via some fast algorithms. Numerical experiments are conducted to verify the theoretical results, and long-time simulations in two- and three-dimensional spaces demonstrate the satisfactory and high effectiveness of the proposed numerical scheme.
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Baskaran, Arvind
Hu, Zhengzheng
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Hu, Zhengzheng
Lowengrub, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Lowengrub, John S.
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wise, Steven M.
Zhou, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ju, Lili
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Li, Xiao
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ju, Lili
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Li, Xiao
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Baskaran, Arvind
Hu, Zhengzheng
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Hu, Zhengzheng
Lowengrub, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Lowengrub, John S.
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wise, Steven M.
Zhou, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ju, Lili
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Li, Xiao
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Ju, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ju, Lili
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USA
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Li, Xiao
Qiao, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA