SUCCESSIVE COEFFICIENTS AND TOEPLITZ DETERMINANT FOR CONCAVE UNIVALENT FUNCTIONS

被引:0
作者
Bhowmik, Bappaditya [1 ]
John, Alana [2 ]
Parveen, Firdoshi [2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
[2] SRM Univ AP, Dept Math, Amaravati 522502, Andhra Pradesh, India
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2024年 / 27卷 / 02期
关键词
Meromorphic functions; univalent functions; Taylor coefficients; successive coefficients; Toeplitz determinant; STARLIKE; CONVEX; PROOF;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Co(p) be the class of all functions f defined in the unit disc D having a simple pole at z = p where 0 < p < 1 and analytic in D \ { p } with f(0) = 0 = f'(0) - 1 such that f maps D onto a domain whose complement with respect to the extended complex plane is a bounded convex set. These functions are called concave univalent functions. Each f is an element of Co(p) has the following Taylor expansion: f(z ) = z + Sigma(infinity)(n = 2)a(n)z(n) , | z | < p . In this article, we first determine the regions of variability of the difference of successive coefficients ( a(n+1) - a(n) ) for n >= 3. We also find sharp upper bounds of the Toeplitz determinants, the entries of which are the Taylor coefficients of functions in Co(p) .
引用
收藏
页码:459 / 469
页数:11
相关论文
共 20 条
[1]   Successive coefficients for functions in the spirallike family [J].
Arora, Vibhuti ;
Ponnusamy, Saminathan ;
Sahoo, Swadesh Kumar ;
Sugawa, Toshiyuki .
BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 188
[2]   A proof of the Livingston conjecture [J].
Avkhadiev, Farit G. ;
Wirths, Karl-Joachim .
FORUM MATHEMATICUM, 2007, 19 (01) :149-157
[3]   Coefficient inequalities for concave and meromorphically starlike univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. .
ANNALES POLONICI MATHEMATICI, 2008, 93 (02) :177-186
[4]   On some results of A. E. Livingston and coefficient problems for concave univalent functions [J].
Bhowmik, Bappaditya .
ARCHIV DER MATHEMATIK, 2010, 95 (06) :575-581
[5]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[6]  
Duren P.L., 1983, UNIVALENT FUNCTIONS
[7]  
Grinspan A.Z., 1976, Sib. Inst. Mat., P41
[8]  
HAYMAN WK, 1963, J LOND MATH SOC, V38, P228, DOI DOI 10.1112/JLMS/S1-38.1.228
[9]  
Leung Y, 1978, Bull. London Math. Soc., V10, P193
[10]   A Note on Successive Coefficients of Convex Functions [J].
Li, Ming ;
Sugawa, Toshiyuki .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2017, 17 (02) :179-193