高位错密度对Al-Cu-Li合金板材蠕变时效响应和力学性能的影响(英文)

被引:0
|
作者
魏硕 [1 ,2 ,3 ]
马培培 [4 ]
陈龙辉 [1 ,2 ,3 ]
杨建使 [1 ,2 ,3 ]
湛利华 [1 ,2 ]
刘春辉 [1 ,2 ,3 ]
机构
[1] Light Alloy Research Institute, Central South University
[2] State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University
[3] School of Mechanical and Electrical Engineering, Central South University
[4] Advancd Research Center, Central South
关键词
蠕变时效; Al-Cu-Li合金; 高位错密度; 低温轧制; 位错强化;
D O I
暂无
中图分类号
TG146.21 [];
学科分类号
摘要
由于传统处理工艺下Al-Cu-Li合金的蠕变应变非常低,导致Al-Cu-Li合金壁板构件蠕变时效成形的难度大幅度增加。因此,提高Al-Cu-Li合金蠕变成形性是一个亟需解决的问题。本文详细地研究了低温下施加大预变形(LPD)和室温下施加大预变形对2195 Al-Cu-Li合金板材蠕变时效响应的影响。利用X射线衍射和透射电子显微镜揭示了LPD合金蠕变时效过程中的位错和析出相的演变规律。通过在液氮温度下进行轧制,获得了具有80%预变形且无边缘开裂的高质量2195合金板材。然而,板材在室温轧制过程中出现了严重的边缘开裂。此外,通过引入高位错密度(位错密度在1.4×1015 m-2以上),2195 Al-Cu-Li合金的蠕变成形性和时效后的强度得到了协同提升。与传统的T3态合金相比,在160℃和150 MPa下,LPD合金的蠕变应变和时效后的强度分别提高了4~6倍和30~50 MPa,但是伸长率有所降低。LPD合金中位错多以位错缠结的组态存在,但是促进了细小T1相均匀析出。
引用
收藏
页码:2194 / 2209
页数:16
相关论文
共 47 条
  • [21] Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited.[J].E.I. Galindo-Nava;C.M.F. Rae.Materials Science & Engineering A.2016,
  • [22] A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy.[J].Yong Li;Zhusheng Shi;Jianguo Lin;Yo-Lun Yang;Qi Rong;Bo-Ming Huang;Tsai-Fu Chung;Cheng-Si Tsao;Jer-Ren Yang;Daniel S. Balint.International Journal of Plasticity.2016,
  • [23] Cryogenic manufacturing processes
    Jawahir, I. S.
    Attia, H.
    Biermann, D.
    Duflou, J.
    Klocke, F.
    Meyer, D.
    Newman, S. T.
    Pusavec, F.
    Putz, M.
    Rech, J.
    Schulze, V.
    Umbrello, D.
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2016, 65 (02) : 713 - 736
  • [24] Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195.[J].B.I. Rodgers;P.B. Prangnell.Acta Materialia.2016,
  • [25] Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers.[J].Li Y.;Shi Z.;Lin J.;Yang Y. L.;Huang B. M.;Chung T. F.;Yang J. R..Materials Science & Engineering A.2016,
  • [26] Effect of age-forming on microstructure; mechanical and corrosion properties of a novel Al–Li alloy.[J].H.Y. Li;W. Kang;X.C. Lu.Journal of Alloys and Compounds.2015,
  • [27] Mechanical properties and surface characteristics of an AA6060 alloy strained in tension at cryogenic and room temperature.[J].Zebing Xu;Hans J. Roven;Zhihong Jia.Materials Science & Engineering A.2015,
  • [28] Effect of cryorolling on the mechanical properties of AA5083 alloy and the Portevin–Le Chatelier phenomenon.[J].K.S.V.B.R. Krishna;K. Chandra Sekhar;R. Tejas;N. Naga Krishna;K. Sivaprasad;R. Narayanasamy;K. Venkateswarlu.Materials & Design.2015,
  • [29] Cryogenic formability and deformation behavior of 2060 Al–Li alloys with water-quenched and T4 aged temper.[J].Dong Fei;Yi Youping;Huang Shiquan;Wang Bingxiang;He Hailin;Huang Ke;Wang Chenguang.Materials Science & Engineering A.2021,
  • [30] Cryogenic formability of a solution-treated aluminum alloy sheet at low temperatures.[J].Yuan Shijian;Cheng Wangjun;Liu Wei.Journal of Materials Processing Technology.2021, prepublish