高位错密度对Al-Cu-Li合金板材蠕变时效响应和力学性能的影响(英文)

被引:0
|
作者
魏硕 [1 ,2 ,3 ]
马培培 [4 ]
陈龙辉 [1 ,2 ,3 ]
杨建使 [1 ,2 ,3 ]
湛利华 [1 ,2 ]
刘春辉 [1 ,2 ,3 ]
机构
[1] Light Alloy Research Institute, Central South University
[2] State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University
[3] School of Mechanical and Electrical Engineering, Central South University
[4] Advancd Research Center, Central South
关键词
蠕变时效; Al-Cu-Li合金; 高位错密度; 低温轧制; 位错强化;
D O I
暂无
中图分类号
TG146.21 [];
学科分类号
摘要
由于传统处理工艺下Al-Cu-Li合金的蠕变应变非常低,导致Al-Cu-Li合金壁板构件蠕变时效成形的难度大幅度增加。因此,提高Al-Cu-Li合金蠕变成形性是一个亟需解决的问题。本文详细地研究了低温下施加大预变形(LPD)和室温下施加大预变形对2195 Al-Cu-Li合金板材蠕变时效响应的影响。利用X射线衍射和透射电子显微镜揭示了LPD合金蠕变时效过程中的位错和析出相的演变规律。通过在液氮温度下进行轧制,获得了具有80%预变形且无边缘开裂的高质量2195合金板材。然而,板材在室温轧制过程中出现了严重的边缘开裂。此外,通过引入高位错密度(位错密度在1.4×1015 m-2以上),2195 Al-Cu-Li合金的蠕变成形性和时效后的强度得到了协同提升。与传统的T3态合金相比,在160℃和150 MPa下,LPD合金的蠕变应变和时效后的强度分别提高了4~6倍和30~50 MPa,但是伸长率有所降低。LPD合金中位错多以位错缠结的组态存在,但是促进了细小T1相均匀析出。
引用
收藏
页码:2194 / 2209
页数:16
相关论文
共 47 条
  • [1] Plastic loading induced high strength-ductility for creep aged Al–Cu–Li alloys.[J].Zhang Liwen;Li Heng;Bian Tianjun;Wu Changhui;Lei Chao.Materials Science & Engineering A.2023,
  • [2] Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy.[J].Yang Jianshi;Liu Chunhui;Ma Peipei;Chen Longhui;Zhan Lihua;Yan Ning.International Journal of Plasticity.2022,
  • [3] First-principles insights into complex interplays among nano-phases in an Al-Cu-Li-Zr alloy.[J].Liu Zhengqing;Ma Peipei;Jiang Yong;Wang Yiren;Liu Chunhui.Acta Materialia.2022,
  • [4] Creep-aging behaviors of Al-Cu-Li alloy with different grain sizes.[J].Dong Y.;Ye L.Y.;Liu X.D.;Ke B.;Hu T.J..Journal of Alloys and Compounds.2022,
  • [5] Cryogenic deformation behavior and failure mechanism of AA7075 alloy sheets tempered at different conditions.[J].Feng Bin;Gu Bin;Li Shuhui.Materials Science & Engineering A.2022,
  • [6] Strong in-plane anisotropy of creep ageing behavior in largely pre-deformed Al-Cu alloy: Experiments and constitutive modeling.[J].Chen Longhui;Liu Chunhui;Ma Peipei;Yang Jianshi;Zhan Lihua;Huang Minghui.International Journal of Plasticity.2022,
  • [7] Mechanical property enhancement and microstructure evolution of an Al-Cu-Li alloy via rolling at different temperatures.[J].Wang Lin;Kong Charlie;Yu Hailiang.Journal of Alloys and Compounds.2022,
  • [8] Effect of cryogenic pre-deformation on the stress relaxation response and mechanical/corrosion properties in Al–Zn–Mg–Cu alloy.[J].Zhu Hongxu;Ma Peipei;Liu Chunhui;He Jun;Yang Jianshi;Chen Longhui;Huang Lanping;Zhan Lihua.Journal of Materials Research and Technology.2022,
  • [9] Precipitation kinetics in metallic alloys: Experiments and modeling.[J].Deschamps A.;Hutchinson C.R..Acta Materialia.2021,
  • [10] Enhancing creep formability and comprehensive property in Al–Mg–Si alloy by combinatorial pre-ageing and large pre-deformation.[J].Chen Kailiang;Liu Chunhui;Ma Peipei;Yang Jianshi;Zhan Lihua;Huang Minghui;Hu Jianhua.Materials Science & Engineering A.2021,