Copositive approximation by rational functions with prescribed numerator degree
被引:0
作者:
YU Dansheng ZHOU Songping Department of MathematicsHangzhou Normal UniversityHangzhou China
论文数: 0引用数: 0
h-index: 0
YU Dansheng ZHOU Songping Department of MathematicsHangzhou Normal UniversityHangzhou China
[1
,21
,310036
]
Department of MathematicsStatistic and Computer ScienceStFrancis Xaiver UniversityAntigonishNova ScotiaCanada BG W Institute of MathematicsZhejiang SciTech UniversityHangzhou China
论文数: 0引用数: 0
h-index: 0
Department of MathematicsStatistic and Computer ScienceStFrancis Xaiver UniversityAntigonishNova ScotiaCanada BG W Institute of MathematicsZhejiang SciTech UniversityHangzhou China
[2
,2
,5
,2
,310028
]
The paper proves that,if f(x)∈Lp[-1,1 ≤ p < ∞,changes sign l times in(-1,1),-1,1] then there exists a real rational function r(x) ∈ Rn(2μ-1)l which is copositive with f(x),such that the following Jackson type estimate ‖f-r‖p≤Cδl2μω holds,where μ is a natural nuωmber ≥(3/2)+(1/p),and Cδ is a positive constant depending only on δ.
[3]
On Positive and Copositive Polynomial and Spline Approximation in L p [?1; 1]; 0< p <∞.[J].Y.K. Hu;K.A. Kopotun;X.M. Yu.Journal of Approximation Theory.1996, 3
[3]
On Positive and Copositive Polynomial and Spline Approximation in L p [?1; 1]; 0< p <∞.[J].Y.K. Hu;K.A. Kopotun;X.M. Yu.Journal of Approximation Theory.1996, 3