介质阻挡放电脱除NOx、SO2和Hg0研究进展

被引:0
作者
潘晓文 [1 ]
张苗 [1 ]
宋捷 [1 ]
李朝兵 [2 ]
赖金平 [2 ]
于洁 [3 ]
机构
[1] 国能九江发电有限公司
[2] 国能南京电力试验研究有限公司
[3] 华中科技大学煤燃烧与低碳利用全国重点实验室
关键词
介质阻挡放电; 燃煤污染物; NOx; SO2; Hg;
D O I
暂无
中图分类号
X701 [废气的处理与利用];
学科分类号
083002 ;
摘要
燃煤污染物的排放为环境带来负担,减少燃煤烟气污染是控制大气环境污染的重要措施,脱硫脱硝脱汞则是烟气污染控制的重点。综述现有介质阻挡放电脱除燃煤烟气污染物研究,介绍介质阻挡放电脱除燃煤污染物机理,分析了不同结构介质阻挡放电反应器的放电原理及应用场景,主要包括空间型介质阻挡放电、沿面型介质阻挡放电、共面型介质阻挡放电、填充型介质阻挡放电和两段式介质阻挡放电;归纳了反应器反应参数、气体成分以及气体间的相互作用对脱除NOx、SO2和Hg0的影响。讨论了催化剂协同介质阻挡放电脱除燃煤污染物与单介质阻挡放电脱除污染物的区别。确定高效率脱除NOx、SO2和Hg0的最佳方式。随介质阻挡放电的电压和频率增加,污染物脱除效率呈增加趋势,但频率进一步增加会降低脱除效率。O2在一定范围内可促进NO和Hg的氧化。微量H2O在高能电子作用下产生OH-和HO2-,从而促进SO2和Hg氧化;但过量H2O会抑制污染物脱除。NH3能促进NO和SO2的氧化。介质阻挡放电通过激活催化剂表面产生电子和空穴,促进NO、SO2和Hg0的氧化,从而具有更优的污染物氧化性能。
引用
收藏
页码:14 / 23
页数:10
相关论文
共 70 条
[1]  
Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma.[J].Siming Ma;Yongchun Zhao;Jianping Yang;Shibo Zhang;Junying Zhang;Chuguang Zheng.Renewable and Sustainable Energy Reviews.2017,
[2]  
A review on removal of elemental mercury from flue gas using advanced oxidation process: Chemistry and process.[J].Yangxian Liu;Yusuf G. Adewuyi.Chemical Engineering Research and Design.2016,
[3]  
FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM 1.0.[J].Ismael Luís Schneider;Elba Calesso Teixeira;Dayana Milena Agudelo-Castañeda;Gabriel Silva e Silva;Naira Balzaretti;Marcel Ferreira Braga;Luís Felipe Silva Oliveira.Science of the Total Environment.2016,
[4]  
Effects of flue gas components on the oxidation of gaseous Hg 0 by dielectric barrier discharge plasma.[J].Qiang Niu;Jinjing Luo;Shiqiang Sun;Qiang Chen;Jingjing Lu.Fuel.2015,
[5]  
Liquid chromatography–atmospheric pressure photoionization–Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil).[J].Josep Sanchís;Luis Felipe Silva Oliveira;Felipe Baptista de Leão;Marinella Farré;Damià Barceló.Science of the Total Environment.2015,
[6]  
Assessment of perfluoroalkyl substances in food items at global scale.[J].Francisca Pérez;Marta Llorca;Marianne Köck-Schulmeyer;Biljana Škrbić;Luis Silva Oliveira;Kátia da Boit Martinello;Naif A. Al-Dhabi;Igor Antić;Marinella Farré;Damià Barceló.Environmental Research.2014,
[7]   Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas [J].
An, Jiutao ;
Shang, Kefeng ;
Lu, Na ;
Jiang, Yuze ;
Wang, Tiecheng ;
Li, Jie ;
Wu, Yan .
JOURNAL OF HAZARDOUS MATERIALS, 2014, 268 :237-245
[8]   Oxidation of Elemental Mercury by Active Species Generated From a Surface Dielectric Barrier Discharge Plasma Reactor [J].
An, Jiu Tao ;
Shang, Ke Feng ;
Lu, Na ;
Jiang, Yu Ze ;
Wang, Tie Cheng ;
Li, Jie ;
Wu, Yan .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2014, 34 (01) :217-228
[9]  
Nanominerals and ultrafine particles from coal fires from Santa Catarina; South Brazil.[J].Camila L. Dias;Marcos L.S. Oliveira;James C. Hower;Silvio R. Taffarel;Rubens M. Kautzmann;Luis F.O. Silva.International Journal of Coal Geology.2014,
[10]  
Hybrid TiO 2 based plasma-catalytic reactors for the removal of hazardous gasses.[J].Indrek Jõgi;Ants Haljaste;Matti Laan.Surface & Coatings Technology.2014,