Improving naive Bayes classifier by dividing its decision regions

被引:0
作者
Zhiyong YANCongfu XU Yunhe PAN Institute of Artificial IntelligenceZhejiang UniversityHangzhou China [310027 ]
机构
关键词
D O I
暂无
中图分类号
TP181 [自动推理、机器学习];
学科分类号
摘要
Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [31] Exact Learning Augmented Naive Bayes Classifier
    Sugahara, Shouta
    Ueno, Maomi
    ENTROPY, 2021, 23 (12)
  • [32] Applying Naive Bayes Classifier to Document Clustering
    Ji, Jie
    Zhao, Qiangfu
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2010, 14 (06) : 624 - 630
  • [33] Incremental discretization for Naive-Bayes classifier
    Lu, Jingli
    Yang, Ying
    Webb, Geoffrey I.
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 223 - 238
  • [34] Boosting the Tree Augmented Naive Bayes classifier
    Downs, T
    Tang, A
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 708 - 713
  • [35] An Extension of Tree Augmented Naive Bayes Classifier
    Wang, Zhongfeng
    Tian, Jianwei
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 243 - 246
  • [36] Understanding of the Naive Bayes Classifier in Spam Filtering
    Wei, Qijia
    6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967
  • [37] Federated Learning with Discriminative Naive Bayes Classifier
    Torrijos, Pablo
    Alfaro, Juan C.
    Gamez, Jose A.
    Puerta, Jose M.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II, 2025, 15347 : 328 - 339
  • [38] Threshold-based Naive Bayes classifier
    Romano, Maurizio
    Contu, Giulia
    Mola, Francesco
    Conversano, Claudio
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (02) : 325 - 361
  • [39] Regularization and averaging of the selective Naive Bayes classifier
    Boulle, Marc
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1680 - 1688
  • [40] Multiple explanations driven Naive Bayes classifier
    Almonayyes, A
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2006, 12 (02) : 127 - 139