The Root Operator on Invariant Subspaces of the Weighted Bergman Space

被引:0
作者
Xiao Yang ZHOU Xiu Ying SHI Yu Feng LU School of Mathematical Science Dalian University of Technology Liaoning P R China School of Continuing Education Chifeng University Inner Mongolia P R China [1 ,2 ,1 ,1 ,116024 ,2 ,24000 ]
机构
关键词
D O I
暂无
中图分类号
O177.3 [线性空间理论(向量空间)];
学科分类号
070104 ;
摘要
In this paper, for an invariant subspace I of the weighted Bergman space, the weighted root operator is defined. We study the weighted root operator and obtain its fundamental properties when the invariant subspace I has finite index. Furthermore, we give some examples of the root operator and estimate ranks of the operators.
引用
收藏
页码:54 / 66
页数:13
相关论文
共 50 条
[21]   A trace formula for multiplication operators on invariant subspaces of the Bergman space [J].
Zhu, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (02) :244-255
[22]   Invariant subspaces and Hankel-type operators on a Bergman space [J].
Nakazi, T ;
Osawa, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :479-484
[23]   AN OPERATOR WITHOUT INVARIANT SUBSPACES ON A NUCLEAR FRECHET SPACE [J].
ATZMON, A .
ANNALS OF MATHEMATICS, 1983, 117 (03) :669-694
[24]   INVARIANT SUBSPACES OF A NILPOTENT OPERATOR ON A BANACH-SPACE [J].
BARRAA, M ;
CHARLES, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 153 :177-182
[25]   Some sufficient conditions for the division property of invariant subspaces in weighted Bergman spaces [J].
Aleman, A ;
Richter, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (02) :542-556
[26]   Description of Bloch spaces, weighted Bergman spaces and invariant subspaces, and related questions [J].
Garayev, Mubariz T. ;
Gurdal, Mehmet ;
Yamanci, Ulas .
KUWAIT JOURNAL OF SCIENCE, 2016, 43 (03) :70-77
[27]   Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions [J].
Atzmon, Aharon ;
Brive, Bruno .
Bergman Spaces and Related Topics in Complex Analysis, Proceedings, 2006, 404 :27-39
[28]   Commuting Quasihomogeneous Toeplitz Operator and Hankel Operator on Weighted Bergman Space [J].
Yang, Jun .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[29]   A QUESTION ON INVARIANT SUBSPACES OF BERGMAN SPACES [J].
BERCOVICI, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :759-760
[30]   Complemented invariant subspaces in Bergman spaces [J].
Korenblum, B ;
Zhu, KH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :467-480