A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES

被引:1
|
作者
张雅山
机构
[1] DepartmentofMathematics,UniversityofMacau
关键词
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Khler-Ricci flow on a minimal elliptic Khler surface converges in the sense of currents to a generalized conical Khler-Einstein on its canonical model. Moreover,the convergence takes place smoothly outside the singular fibers and the chosen divisor.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [41] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [42] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [43] The Kähler–Ricci flow on Fano bundles
    Xin Fu
    Shijin Zhang
    Mathematische Zeitschrift, 2017, 286 : 1605 - 1626
  • [44] ON THE KHLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR
    苏延辉
    张坤
    Acta Mathematica Scientia, 2012, 32 (03) : 1239 - 1244
  • [45] Independence of singularity type for numerically effective Kähler-Ricci flows
    Wondo, Hosea
    Zhang, Zhou
    GEOMETRY & TOPOLOGY, 2025, 29 (01)
  • [46] A Gradient Estimate for the Ricci–Kähler Flow
    Bennett Chow
    Annals of Global Analysis and Geometry, 2001, 19 : 321 - 325
  • [47] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [48] ON SOME ROTATIONALLY SYMMETRIC GRADIENT PSEUDO-KHLER-RICCI SOLITONS
    段孝娟
    Acta Mathematica Scientia, 2018, (01) : 269 - 288
  • [49] A note on almost Kähler, nearly Kähler submersions
    Falcitelli M.
    Pastore A.M.
    Journal of Geometry, 2000, 69 (1-2) : 79 - 87
  • [50] Note on Locally Conformal Kähler Surfaces
    Yoshinobu Kamishima
    Geometriae Dedicata, 2001, 84 : 115 - 124