A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES

被引:1
|
作者
张雅山
机构
[1] DepartmentofMathematics,UniversityofMacau
关键词
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Khler-Ricci flow on a minimal elliptic Khler surface converges in the sense of currents to a generalized conical Khler-Einstein on its canonical model. Moreover,the convergence takes place smoothly outside the singular fibers and the chosen divisor.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [31] A Scalar Curvature Bound Along the Conical Kähler–Ricci Flow
    Gregory Edwards
    The Journal of Geometric Analysis, 2018, 28 : 225 - 252
  • [32] The Kähler–Ricci flow on surfaces of positive Kodaira dimension
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2007, 170 : 609 - 653
  • [33] Metric contraction of the cone divisor by the conical Kähler–Ricci Flow
    Gregory Edwards
    Mathematische Annalen, 2019, 374 : 1525 - 1557
  • [34] Smooth approximations of the conical Kähler–Ricci flows
    Yuanqi Wang
    Mathematische Annalen, 2016, 365 : 835 - 856
  • [35] Rotational symmetry of conical Kähler–Ricci solitons
    Otis Chodosh
    Frederick Tsz-Ho Fong
    Mathematische Annalen, 2016, 364 : 777 - 792
  • [36] Matrix Li-Yau-Hamilton Estimates Under Kähler-Ricci Flow
    Li, Xiaolong
    Liu, Hao-Yue
    Ren, Xin-An
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [37] Classification results for expanding and shrinking gradient Kähler-Ricci solitons
    Conlon, Ronan J.
    Deruelle, Alix
    Sun, Song
    GEOMETRY & TOPOLOGY, 2024, 28 (01) : 267 - 351
  • [38] Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold
    Feng Wang
    Xiaohua Zhu
    Science China Mathematics, 2022, 65 : 2337 - 2370
  • [39] Uniformly strong convergence of K?hler-Ricci flows on a Fano manifold
    Feng Wang
    Xiaohua Zhu
    ScienceChina(Mathematics), 2022, 65 (11) : 2337 - 2370
  • [40] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595