Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting

被引:0
|
作者
Ya Jun LI
Wen Dong WANG
机构
[1] SchoolofMathematicalSciences,DalianUniversityofTechnology
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this note we derive MHD boundary layer equations according to viscosity and resistivity coefficients. Especially, when these viscosity and resistivity coefficients are of different orders, it leads to degenerate MHD boundary layer equations. We prove these degenerate boundary layers are stable around a steady solution.
引用
收藏
页码:1402 / 1418
页数:17
相关论文
共 50 条
  • [41] Real Analytic Local Well-Posedness for the Triple Deck
    Iyer, Sameer
    Vicol, Vlad
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (08) : 1641 - 1684
  • [42] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    Bian, Dongfen
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1153 - 1176
  • [43] Global well-posedness of the MHD equations via the comparison principle
    Dongyi Wei
    Zhifei Zhang
    ScienceChina(Mathematics), 2018, 61 (11) : 2111 - 2120
  • [44] Global well-posedness of the MHD equations via the comparison principle
    Wei, Dongyi
    Zhang, Zhifei
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (11) : 2111 - 2120
  • [45] Well-Posedness of Fractional Degenerate Differential Equations in Banach Spaces
    Shangquan Bu
    Gang Cai
    Fractional Calculus and Applied Analysis, 2019, 22 : 379 - 395
  • [46] Well-posedness results for triply nonlinear degenerate parabolic equations
    Andreianov, B.
    Bendahmane, M.
    Karlsen, K. H.
    Ouaro, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) : 277 - 302
  • [47] Well-posedness theory for degenerate parabolic equations on Riemannian manifolds
    Graf, M.
    Kunzinger, M.
    Mitrovic, D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) : 4787 - 4825
  • [48] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    边东芬
    郭柏灵
    ActaMathematicaScientia, 2013, 33 (04) : 1153 - 1176
  • [49] Global well-posedness of the MHD equations via the comparison principle
    Dongyi Wei
    Zhifei Zhang
    Science China Mathematics, 2018, 61 : 2111 - 2120
  • [50] On the Well-posedness of the Ideal MHD Equations in the Triebel–Lizorkin Spaces
    Qionglei Chen
    Changxing Miao
    Zhifei Zhang
    Archive for Rational Mechanics and Analysis, 2010, 195 : 561 - 578