STABILITY OF DISSIPATIVE BOLTZMANN EQUATION FOR ONE-DIMENSIONAL GRANULAR GASES

被引:0
|
作者
Shoubo Jin Panfeng Chen School of Math and Statistics Suzhou University Suzhou Anhui [234000 ]
机构
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, the stability of the dissipative Boltzmann equation is investigated under the influence of an external source of energy for the spatially homogeneous case. Using probability distance, we give an estimate to show the uniform stability of the solution.
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [21] Experimental determination of a state equation for dissipative granular gases
    Falcon, E
    Fauve, S
    Laroche, C
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1999, 96 (06) : 1111 - 1116
  • [22] Kinetic approach to one-dimensional non-uniform granular gases
    Zhang, DM
    Li, R
    Su, XY
    Pan, GJ
    Yu, BM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 8861 - 8872
  • [23] Modified Scattering for the One-Dimensional Schrodinger Equation with a Subcritical Dissipative Nonlinearity
    Liu, Xuan
    Zhang, Ting
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025, 37 (01) : 577 - 601
  • [24] Boltzmann equation for dissipative gases in homogeneous states with nonlinear friction
    Trizac, E.
    Barrat, A.
    Ernst, M. H.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [25] Symmetries and invariant solutions of the one-dimensional Boltzmann equation for inelastic collisions
    O. V. Ilyin
    Theoretical and Mathematical Physics, 2016, 186 : 183 - 191
  • [26] Numerical simulation of the stationary one-dimensional Boltzmann equation by particle methods
    Bobylev, A.V.
    Struckmeier, J.
    1996, Gauthier-Villars, Paris, France (15)
  • [27] Calculation of nonlocal EDF using a one-dimensional Boltzmann equation solver
    Yuan, C.
    Yao, J.
    Bogdanov, E. A.
    Kudryavtsev, A. A.
    Rabadanov, K. M.
    Zhou, Z.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [28] ONE-DIMENSIONAL QUANTUM LATTICE BOLTZMANN SCHEME FOR THE NONLINEAR DIRAC EQUATION
    Palpacelli, Silvia
    Romatschke, Paul
    Succi, Sauro
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (12):
  • [29] Numerical simulation of the stationary one-dimensional Boltzmann equation by particle methods
    Bobylev, AV
    Struckmeier, J
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1996, 15 (01) : 103 - 118
  • [30] A deterministic spectral method for solving the Boltzmann equation for one-dimensional flows
    Watchararuangwit, Chatchawan
    Grigoriev, Yurii N.
    Meleshko, Sergey V.
    SCIENCEASIA, 2009, 35 (01): : 70 - 79