Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations

被引:0
作者
Wei Hua WANG
Gang WU
机构
[1] SchoolofMathematicalSciences,UniversityofChineseAcademyofSciences
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we establish the global well-posedness of the generalized rotating magnetohydrodynamics equations if the initial data are in X1-2α defined by X1-2α={u∈D'(R3):∫R3|ξ|1-2α|(ξ)|dξ<+∞}.In addition,we also give Gevrey class regularity of the solution.
引用
收藏
页码:992 / 1000
页数:9
相关论文
共 20 条
[1]  
Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry O.A. Ladyzhenskaya; (Russian) Zap. Nauv?cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1968,
[2]  
Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations[J] Hantaek Bae Proceedings of the American Mathematical Society 2015,
[3]  
On axially symmetric incompressible magnetohydrodynamics in three dimensions[J] Zhen Lei Journal of Differential Equations 2015,
[4]  
Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type[J] Tsukasa Iwabuchi;Ryo Takada Journal of Functional Analysis 2014,
[5]  
Global well-posedness of the three dimensional magnetohydrodynamics equations[J] Yuzhu Wang;Keyan Wang Nonlinear Analysis: Real World Applications 2014,
[6]   Global solutions for the Navier-Stokes equations in the rotational framework [J].
Iwabuchi, Tsukasa ;
Takada, Ryo .
MATHEMATISCHE ANNALEN, 2013, 357 (02) :727-741
[7]  
The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework[J] Matthias Hieber;Yoshihiro Shibata Mathematische Zeitschrift 2010, 2
[8]   LARGE, GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS, SLOWLY VARYING IN ONE DIRECTION [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) :2859-2873
[9]   On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations [J].
Seregin, G. ;
Sverak, V. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) :171-201
[10]  
Wellposedness and stability results for the Navier–Stokes equations in R 3[J] Jean-Yves Chemin;Isabelle Gallagher Annales de l'Institut Henri Poincare / Analyse non lineaire 2008, 2