Biholomorphic Mappings and the Extension Operators on New Hartogs Domains

被引:3
作者
Yan Yan CUI [1 ,2 ]
Chao Jun WANG [1 ]
Hao LIU [3 ]
机构
[1] College of Mathematics and Statistics, Zhoukou Normal University
[2] College of Mathematics and Information Science, Hebei Normal University
[3] Institute of Contemporary Mathematics, He’nan University
关键词
D O I
暂无
中图分类号
O174.5 [复分析、复变函数];
学科分类号
070104 ;
摘要
In this paper, we generalize the Roper–Suffridge operator on the extended Hartogs domains.By using the geometric properties and the growth theorems of subclasses of biholomorphic mappings,we obtain the generalized operators preserve the properties of parabolic and spirallike mappings of type β and order ρ, S*Ω(β, A, B), almost starlike mapping of complex order λ on ΩN under different conditions, and thus we get the corresponding results on the unit ball B~n in C~n. The conclusions lead to some known results.
引用
收藏
页码:671 / 689
页数:19
相关论文
共 18 条
[1]  
The Generalized Roper-Suffridge Extension Operator[J] Feng Shuxia;Liu Taishun Acta Mathematica Scientia 2008, 1
[2]  
A class of Loewner chain preserving extension operators[J] Jerry R. Muir Journal of Mathematical Analysis and Applications 2007, 2
[3]  
The generalized Roper–Suffridge extension operator[J] Sheng Gong;Taishun Liu Journal of Mathematical Analysis and Applications 2003, 2
[4]  
Extension operators for locally univalent mappings[J] Ian Graham;Hidetaka Hamada;Gabriela Kohr;Ted J. Suffridge The Michigan Mathematical Journal 2002,
[5]  
The growth theorem and quasiconformal extension of strongly spirallike mappings of type α[J] Hidetaka Hamada;Gabriela Kohr Complex Variables and Elliptic Equations 2001, 4
[6]  
Univalent mappings associated with the Roper-Suffridge extension operator[J] Ian Graham;Gabriela Kohr Journal d’Analyse Mathématique 2000,
[7]  
Convex mappings on the unit ball of C n[J] Kevin A. Roper;Ted J. Suffridge Journal d’Analyse Mathematique 1995, 1
[8]   沿单位方向上的ρ次抛物星形映射的偏差定理 [J].
刘爱超 ;
刘浩 .
数学进展, 2015, 44 (04) :545-552
[9]   Bergman-Hartogs型域的全纯自同构群 [J].
潘利双 ;
王安 .
中国科学:数学, 2015, 45 (01) :31-42
[10]   一类Hartogs域的Einstein-Khler度量和Kobayashi度量的比较定理 [J].
叶薇薇 ;
王安 .
数学年刊A辑(中文版), 2012, 33 (06) :687-704