Dual Lie Bialgebra Structures of W-algebra W(2, 2) Type

被引:0
作者
Guang Ai SONG [1 ]
Yu Cai SU [2 ]
Xiao Qing YUE [2 ]
机构
[1] College of Mathematics and Information Science, Shandong Technology and Business University
[2] School of Mathematical Sciences, Tongji
关键词
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
摘要
In the present paper, we investigate the dual Lie coalgebras of the centerless W(2, 2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2, 2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.
引用
收藏
页码:1696 / 1714
页数:19
相关论文
共 12 条
[1]  
W -Algebra W (2; 2) and the Vertex Operator Algebra $${L(\frac{1}{2};\;0)\;\otimes\; L(\frac{1}{2};\;0)}$$[J] Wei Zhang;Chongying Dong Communications in Mathematical Physics 2009, 3
[2]  
Hamiltonian type Lie bialgebras[J] Bin Xin;Guang-ai Song;Yu-cai Su Science in China Series A: Mathematics 2007,
[3]  
Lie bialgebras of generalized Witt type[J] Guang’ai Song;Yucai Su Science in China Series A 2006,
[4]  
Lie Bialgebras of Generalized Virasoro–like Type[J] Yue Zhu Wu;Guang Ai Song;Yu Cai Su Acta Mathematica Sinica; English Series 2006,
[5]   Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series [J].
Su, YC ;
Zhao, KM .
JOURNAL OF ALGEBRA, 2002, 252 (01) :1-19
[6]   Classification of the Lie bialgebra structures on the Witt and Virasoro algebras [J].
Ng, SH ;
Taft, EJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) :67-88
[7]  
ON THE DEFINITION OF THE DUAL LIE COALGEBRA OF A LIE ALGEBRA[J] Publicacions Matemàtiques 1995, 2
[8]  
The hopf algebra of linearly recursive sequences[J] Brian Peterson;Earl J. Taft Aequationes Mathematicae 1980, 1
[9]   Loop与current Virasoro型Lie双代数的对偶 [J].
宋光艾 ;
苏育才 .
中国科学:数学, 2017, 47 (11) :1595-1606
[10]  
Dual Lie bialgebra structures of Poisson types[J] SONG Guang'Ai;SU YuCai; Science China(Mathematics) 2015, 06