The Characterization of Parseval Frame Wavelets

被引:0
|
作者
Xin Xiang ZHANGGuo Chang WU College of InformationHenan University of Finance and EconomicsHenan PRChina [450002 ]
机构
关键词
D O I
暂无
中图分类号
O174.2 [傅里叶分析(经典调和分析)];
学科分类号
摘要
In this paper,we characterize all generalized low pass filters and MRA Parseval frame wavelets in L 2 (R n ) with matrix dilations of the form (Df)(x) =√ 2f(Ax),where A is an arbitrary expanding n × n matrix with integer coefficients,such that |det A| = 2.We study the pseudo-scaling functions,generalized low pass filters and MRA Parseval frame wavelets and give some important characterizations about them.Furthermore,we give a characterization of the semiorthogonal MRA Parseval frame wavelets and provide several examples to verify our results.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 50 条
  • [31] Density of Frame Wavelets and Tight Frame Wavelets in Local Fields
    Behera, Biswaranjan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (06)
  • [32] Existence of Parseval oblique duals of a frame sequence
    Koo, Yoo Young
    Lim, Jae Kun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 470 - 476
  • [33] Parseval frame multiwavelets associated with A-FMRA
    Wu, Guochang
    Xiao, Huimin
    Journal of Computational Information Systems, 2010, 6 (06): : 1943 - 1950
  • [34] Inequalities on the closeness of two vectors in a Parseval frame
    Ashino, Ryuichi
    Mandai, Takeshi
    Morimoto, Akira
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (2) : 1329 - 1340
  • [35] Inequalities on the closeness of two vectors in a Parseval frame
    Ryuichi Ashino
    Takeshi Mandai
    Akira Morimoto
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1329 - 1340
  • [36] CONTINUOUS FRAME WAVELETS
    Ali Akbar Arefijamaal
    Narguess Tavallaei
    Acta Mathematica Scientia, 2012, 32 (02) : 807 - 812
  • [37] CONTINUOUS FRAME WAVELETS
    Arefijamaal, Ali Akbar
    Tavallaei, Narguess
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 807 - 812
  • [38] On frame wavelets associated with frame multiresolution analysis
    Kim, HO
    Lim, JK
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) : 61 - 70
  • [39] Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties
    Paluszynski, M
    Sikic, H
    Weiss, GD
    Xiao, SL
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) : 297 - 327
  • [40] Frame representations and Parseval duals with applications to Gabor frames
    Han, Deguang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3307 - 3326