The Characterization of Parseval Frame Wavelets

被引:0
|
作者
Xin Xiang ZHANGGuo Chang WU College of InformationHenan University of Finance and EconomicsHenan PRChina [450002 ]
机构
关键词
D O I
暂无
中图分类号
O174.2 [傅里叶分析(经典调和分析)];
学科分类号
摘要
In this paper,we characterize all generalized low pass filters and MRA Parseval frame wavelets in L 2 (R n ) with matrix dilations of the form (Df)(x) =√ 2f(Ax),where A is an arbitrary expanding n × n matrix with integer coefficients,such that |det A| = 2.We study the pseudo-scaling functions,generalized low pass filters and MRA Parseval frame wavelets and give some important characterizations about them.Furthermore,we give a characterization of the semiorthogonal MRA Parseval frame wavelets and provide several examples to verify our results.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 50 条
  • [1] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANG
    Journal of Mathematical Research with Applications, 2011, (02) : 242 - 250
  • [2] Parseval frame scaling sets and MSF Parseval frame wavelets
    Liu, Zhanwei
    Hu, Guoen
    Lu, Zhibo
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1966 - 1974
  • [3] On Parseval super-frame wavelets
    LI Zhongyan SHI XianliangCollege of Mathematics and Computer ScienceKey Laboratory of High Performance Computing and Stochastic Information ProcessingHPCSIPMinistry of Education of China Hunan Normal UniversityChangsha ChinaDepartment of Mathematics and PhysicsNorth China Electric Power UniversityBeijing China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2012, 27 (02) : 192 - 204
  • [4] On Parseval super-frame wavelets
    LI Zhong-yan1
    Applied Mathematics:A Journal of Chinese Universities, 2012, (02) : 192 - 204
  • [5] On Parseval super-frame wavelets
    Li Zhong-yan
    Shi Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (02) : 192 - 204
  • [6] On Parseval super-frame wavelets
    Zhong-yan Li
    Xian-liang Shi
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 192 - 204
  • [7] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456
  • [8] Further results on the connectivity of Parseval frame wavelets
    Garrigos, G.
    Hernandez, E.
    Sikic, H.
    Soria, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3211 - 3221
  • [9] Parseval frame wavelets associated with A-FMRA
    Wu, Guochang
    Cheng, Zhengxing
    Li, Dengfeng
    Zhang, Fangjuan
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1233 - 1243
  • [10] Projections and dyadic Parseval frame MRA wavelets
    Luthy, Peter M.
    Weiss, Guido L.
    Wilson, Edward N.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (03) : 511 - 533