Spacelike M?bius Hypersurfaces in Four Dimensional Lorentzian Space Form

被引:2
作者
Yan Bin LIN [1 ]
Ying L [2 ]
Chang Ping WANG [1 ]
机构
[1] College of Mathematics and Informatics, Fujian Normal University
[2] School of Mathematical Sciences, Xiamen
关键词
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
摘要
In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {Ei}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form.
引用
收藏
页码:519 / 536
页数:18
相关论文
共 50 条
[31]   SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM [J].
Jin, Dae Ho .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (02) :225-234
[32]   Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms [J].
Ma Xiang ;
Wang Peng .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09) :1561-1576
[33]   Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms [J].
Xiang Ma ;
Peng Wang .
Science in China Series A: Mathematics, 2008, 51 :1561-1576
[34]   Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms [J].
MA Xiang & WANG Peng School of Mathematical Sciences .
ScienceinChina(SeriesA:Mathematics), 2008, (09) :1561-1576
[35]   On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms [J].
Gomes, Jose N. ;
de Lima, Henrique F. ;
dos Santos, Fabio R. ;
Velasquez, Marco Antonio L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) :248-263
[36]   Willmore spacelike submanifolds in a Lorentzian space form Npn+p(c) [J].
Shu, Shichang ;
Chen, Junfeng .
MATHEMATICAL COMMUNICATIONS, 2014, 19 (02) :301-319
[37]   Some Estimates Over Spacelike Spin Hypersurfaces of Lorentzian Manifold [J].
Eker, Serhan .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (01)
[38]   Some Estimates Over Spacelike Spin Hypersurfaces of Lorentzian Manifold [J].
Serhan Eker .
Advances in Applied Clifford Algebras, 2022, 32
[39]   Semigroups in Möbius and Lorentzian Geometry [J].
Jimmie D. Lawson .
Geometriae Dedicata, 1998, 70 :139-180
[40]   On 4-dimensional Lorentzian affine hypersurfaces with an almost symplectic form [J].
Szancer, Michal ;
Szancer, Zuzanna .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (08) :1613-1628