Melnikov Method and Detection of Chaos for Non-smooth Systems

被引:0
作者
Linsong SHI [1 ]
Yongkui ZOU [2 ]
Tassilo Kpper [3 ]
机构
[1] Department of Mathematics,Tsinghua University
[2] Departmentt of Mathematics,Jilin University
[3] Mathematics Institute,Univeristy of
关键词
D O I
暂无
中图分类号
O19 [动力系统理论];
学科分类号
070104 ; 0711 ; 071101 ;
摘要
We extend the Melnikov method to non-smooth dynamical systems to study the global behavior near a non-smooth homoclinic orbit under small time-periodic perturbations. The definition and an explicit expression for the extended Melnikov function are given and applied to determine the appearance of transversal homoclinic orbits and chaos. In addition to the standard integral part, the extended Melnikov function contains an extra term which reflects the change of the vector field at the discontinuity. An example is discussed to illustrate the results.
引用
收藏
页码:881 / 896
页数:16
相关论文
共 50 条
  • [41] On the control of non-smooth complementarity dynamical systems
    Brogliato, B
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789): : 2369 - 2383
  • [42] Applications of non-smooth mechanical systems - An overview
    Popp, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S101 - S104
  • [43] Spectral analysis of non-smooth dynamical systems
    Wedig, WV
    [J]. STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 249 - 256
  • [44] Online Bayesian Identification of Non-Smooth Systems
    Chatzis, Manolis N.
    Chatzi, Eleni N.
    [J]. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 918 - 923
  • [45] Bifurcations of equilibria in non-smooth continuous systems
    Leine, R. I.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 223 (01) : 121 - 137
  • [46] Examples of non-smooth mechanical systems - An overview
    Popp, K
    [J]. IUTAM SYMPOSIUM ON UNILATERAL MULTIBODY CONTACTS, 2000, 72 : 233 - 242
  • [47] Delayed feedback control of chaos in a single dof non-smooth system
    Zhang, Qing-Shuang
    Ding, Wang-Cai
    Sun, Chuang
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2008, 27 (01): : 155 - 158
  • [48] Reduction to invariant cones for non-smooth systems
    Kuepper, T.
    Hosham, H. A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (05) : 980 - 995
  • [49] Models of non-smooth switches in electrical systems
    Glocker, C
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2005, 33 (03) : 205 - 234
  • [50] Coupled systems of non-smooth differential equations
    Jacquemard, Alain
    Tonon, Durval J.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 239 - 255