A counterexample theorem in quasiconformal mapping theory

被引:0
作者
沈玉良
机构
[1] Department of Mathematics
[2] Suzhou University
[3] Suzhou
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
<正> Given a quasisymmetric homeomorphism h of the unit circle onto itself, denote by Kh* , Hh and Kh the extremal maximal dilatation, boundary dilatation and maximal dilatation of h, respectively. It is proved that there exists a family of quasisymmetric homeomoiphisms h such that Kh < Hh = Kh* . This gives a negative answer to a problem asked independently by Wu and Yang. Furthermore, some related topics are also discussed.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 8 条
[1]  
Moduli of quadrilaterals and extremal quasiconformal extensions of quasisymmetric functions[J] S. Wu Commentarii Mathematici Helvetici 1997, 4
[2]  
A remark on “an approximation condition and extremal quasiconformal extension”[J] Jixiu Chen;Zhiguo Chen Chinese Science Bulletin 1997, 21
[3]  
Quadrilaterals and extremal quasiconformal extensions[J] J. M. Anderson;A. Hinkkanen Commentarii Mathematici Helvetici 1995, 1
[4]  
On the existence of extremal Teichmüller mappings[J] Li Zhong Commentarii Mathematici Helvetici 1982, 1
[5]  
On the existence of extremal Teichmueller mappings[J] Kurt Strebel Journal d’Analyse Mathématique 1976, 1
[6]  
The extremal property of certain Teichmüller mappings[J] G. C. Sethares Commentarii Mathematici Helvetici 1968, 1
[7]  
Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises[J] Kurt Strebel Commentarii Mathematici Helvetici 1962, 1
[8]  
The boundary correspondence under quasiconformal mappings[J] A. Beurling;L. Ahlfors Acta Mathematica 1956, 1