Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana

被引:32
|
作者
Zhenhua Ding a
机构
基金
中国国家自然科学基金;
关键词
ABA; abiotic stress; Arabidopsis thaliana; drought; MYB15; MYB transcription factor;
D O I
暂无
中图分类号
Q943.2 [植物基因工程];
学科分类号
摘要
Abiotic stresses cause serious crop losses. Knowledge on genes functioning in plant responses to adverse growth conditions is essential for developing stress tolerant crops. Here we report that transgenic expression of MYB15, encoding a R2R3 MYB transcription factor in Arabidopsis thaliana, conferred hypersensitivity to exogenous abscisic acid (ABA) and improved tolerance to drought and salt stresses. The promoter of MYB15 was active in not only vegetative and reproductive organs but also the guard cells of stomata. Its transcript level was substantially upregulated by ABA, drought or salt treatments. Compared with wild type (WT) control, MYB15 overexpression lines were hypersensitive to ABA in germination assays, more susceptible to ABA-elicited inhibition of root elongation, and more sensitive to ABA-induced stomatal closure. In line with the above findings, the transcript levels of ABA biosynthesis (ABA1, ABA2), signaling (ABI3), and responsive genes (AtADH1, RD22, RD29B, AtEM6) were generally higher in MYB15 overexpression seedlings than in WT controls after treatment with ABA. MYB15 overexpression lines displayed improved survival and reduced water loss rates than WT control under water deficiency conditions. These overexpression lines also displayed higher tolerance to NaCl stress. Collectively, our data suggest that overexpression of MYB15 improves drought and salt tolerance in Arabidopsis possibly by enhancing the expression levels of the genes involved in ABA biosynthesis and signaling, and those encoding the stress-protective proteins.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条
  • [1] Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana
    Ding, Zhenhua
    Li, Shiming
    An, Xueli
    Liu, Xin
    Qin, Huanju
    Wang, Damen
    JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (01) : 17 - 29
  • [2] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Yin, Xuming
    Huang, Lifang
    Zhang, Xin
    Wang, Manling
    Xu, Guoyun
    Xia, Xinjie
    PLANT GROWTH REGULATION, 2015, 75 (02) : 549 - 556
  • [3] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Xuming Yin
    Lifang Huang
    Xin Zhang
    Manling Wang
    Guoyun Xu
    Xinjie Xia
    Plant Growth Regulation, 2015, 75 : 549 - 556
  • [4] Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana
    Yuan, Xiaowei
    Li, Yaxiao
    Liu, Shiyang
    Xia, Fei
    Li, Xinzheng
    Qi, Baoxiu
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (06) : 1637 - 1649
  • [5] Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana
    Yu, Yong-Tao
    Wu, Zhen
    Lu, Kai
    Bi, Chao
    Liang, Shan
    Wang, Xiao-Fang
    Zhang, Da-Peng
    PLANT MOLECULAR BIOLOGY, 2016, 90 (03) : 267 - 279
  • [6] Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana
    Yong-Tao Yu
    Zhen Wu
    Kai Lu
    Chao Bi
    Shan Liang
    Xiao-Fang Wang
    Da-Peng Zhang
    Plant Molecular Biology, 2016, 90 : 267 - 279
  • [7] Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana
    Ni, Zhiyong
    Hu, Zheng
    Jiang, Qiyan
    Zhang, Hui
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 427 (02) : 330 - 335
  • [8] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Yan Wang
    Qianqian Wang
    MingLi Liu
    Chen Bo
    Xi Wang
    Qing Ma
    Beijiu Cheng
    Ronghao Cai
    Journal of Plant Biology, 2017, 60 : 612 - 621
  • [9] Increased abscisic acid sensitivity and drought tolerance of Arabidopsis by overexpression of poplar abscisic acid receptors
    Li, Qing
    Tian, Qianqian
    Zhang, Yue
    Niu, Mengxue
    Yu, Xiaoqian
    Lian, Conglong
    Liu, Chao
    Wang, Hou-Ling
    Yin, Weilun
    Xia, Xinli
    PLANT CELL TISSUE AND ORGAN CULTURE, 2022, 148 (02) : 231 - 245
  • [10] Increased abscisic acid sensitivity and drought tolerance of Arabidopsis by overexpression of poplar abscisic acid receptors
    Qing Li
    Qianqian Tian
    Yue Zhang
    Mengxue Niu
    Xiaoqian Yu
    Conglong Lian
    Chao Liu
    Hou-Ling Wang
    Weilun Yin
    Xinli Xia
    Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 148 : 231 - 245