Extraction of coastline in high-resolution remote sensing images based on the active contour model

被引:2
|
作者
邢坤
付宜利
王树国
韩现伟
机构
[1] StateKeyLaboratoryofRoboticsandSystem,HarbinInstituteofTechnology
关键词
D O I
暂无
中图分类号
TP751 [图像处理方法];
学科分类号
摘要
While executing tasks such as ocean pollution monitoring,maritime rescue,geographic mapping,and automatic navigation utilizing remote sensing images,the coastline feature should be determined.Traditional methods are not satisfactory to extract coastline in high-resolution panchromatic remote sensing image.Active contour model,also called snakes,have proven useful for interactive specification of image contours,so it is used as an effective coastlines extraction technique.Firstly,coastlines are detected by water segmentation and boundary tracking,which are considered initial contours to be optimized through active contour model.As better energy functions are developed,the power assist of snakes becomes effective.New internal energy has been done to reduce problems caused by convergence to local minima,and new external energy can greatly enlarge the capture region around features of interest.After normalization processing,energies are iterated using greedy algorithm to accelerate convergence rate.The experimental results encompassed examples in images and demonstrated the capabilities and efficiencies of the improvement.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [31] Features and Methods of Road Extraction from High-resolution Remote Sensing Images
    You, Guoping
    Zeng, Wanghui
    2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [32] Road extraction from high-resolution remote sensing images with spatial continuity
    Remote Sensing and GIS Application Laboratory, Xinjiang Ecology and Geography Institute, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
    不详
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 11 (1298-1301):
  • [33] Extraction Method of Rotated Objects from High-Resolution Remote Sensing Images
    Liu, Tao Sun Kun
    Shi, Jiechuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 295 - 307
  • [34] Deep Learning for Building Extraction from High-Resolution Remote Sensing Images
    Norelyaqine, Abderrahim
    Saadane, Abderrahim
    ADVANCED TECHNOLOGIES FOR HUMANITY, 2022, 110 : 116 - 128
  • [35] Change Detection and Feature Extraction Using High-Resolution Remote Sensing Images
    Sharma V.K.
    Luthra D.
    Mann E.
    Chaudhary P.
    Chowdary V.M.
    Jha C.S.
    Remote Sensing in Earth Systems Sciences, 2022, 5 (3) : 154 - 164
  • [36] Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review
    Lian, Renbao
    Wang, Weixing
    Mustafa, Nadir
    Huang, Liqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5489 - 5507
  • [37] Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet
    Xin, Jiang
    Zhang, Xinchang
    Zhang, Zhiqiang
    Fang, Wu
    REMOTE SENSING, 2019, 11 (21)
  • [38] Ship Detection in High-resolution Remote Sensing Images Based on Deformable Part Model
    Wang, Jianmei (jianmeiw@tongji.edu.cn), 1887, Science Press (45):
  • [39] ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images
    Wang, Jing
    Zhang, Chen
    Lin, Tianwen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (02): : 1907 - 1925
  • [40] Quadtree decomposition-based Deep learning method for multiscale coastline extraction with high-resolution remote sensing imagery
    Sun, Shuting
    Mu, Lin
    Feng, Ruyi
    Chen, Yifu
    Han, Wei
    SCIENCE OF REMOTE SENSING, 2024, 9