Specific properties of Lipschitz class functions

被引:0
|
作者
Kashibadze, A. [1 ]
Tsagareishvili, V. [2 ]
机构
[1] Kutaisi Int Univ, Kutaisi, Georgia
[2] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Tbilisi, Georgia
关键词
Lipschitz class function; orthonormal system; Fourier coefficient; linear functional; FOURIER COEFFICIENTS; ABSOLUTE CONVERGENCE; SERIES;
D O I
10.1007/s10474-024-01432-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Lipschitz class functions on [0, 1] and special series of their Fourier coefficients with respect to general orthonormal systems (ONS). The convergence of classical Fourier series (trigonometric, Haar, Walsh systems) of Lip 1 class functions is a trivial problem and is well known. But general Fourier series, as it is known, even for the function f (x) = 1 does not converge. On the other hand, we show that such series do not converge with respect to general ONSs. In the paper we find the special conditions on the functions phi n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi_{n}$$\end{document} of the system (phi n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi_{n})$$\end{document} such that the above-mentioned series are convergent for any Lipschitz class function. The obtained result is the best possible.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 50 条