Enhancing recognition and interpretation of functional phenotypic sequences through fine-tuning pre-trained genomic models

被引:1
作者
Du, Duo [1 ]
Zhong, Fan [1 ]
Liu, Lei [1 ,2 ]
机构
[1] Fudan Univ, Intelligent Med Inst, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Inst Stem Cell Res & Clin Translat, Shanghai 200120, Peoples R China
关键词
Genomic sequences; Genotype-phenotype; Fine-tuning; HERV; Motif; DNA-BINDING DOMAIN; TRANSCRIPTION; EVOLUTION; FAMILY;
D O I
10.1186/s12967-024-05567-z
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundDecoding human genomic sequences requires comprehensive analysis of DNA sequence functionality. Through computational and experimental approaches, researchers have studied the genotype-phenotype relationship and generate important datasets that help unravel complicated genetic blueprints. Thus, the recently developed artificial intelligence methods can be used to interpret the functions of those DNA sequences.MethodsThis study explores the use of deep learning, particularly pre-trained genomic models like DNA_bert_6 and human_gpt2-v1, in interpreting and representing human genome sequences. Initially, we meticulously constructed multiple datasets linking genotypes and phenotypes to fine-tune those models for precise DNA sequence classification. Additionally, we evaluate the influence of sequence length on classification results and analyze the impact of feature extraction in the hidden layers of our model using the HERV dataset. To enhance our understanding of phenotype-specific patterns recognized by the model, we perform enrichment, pathogenicity and conservation analyzes of specific motifs in the human endogenous retrovirus (HERV) sequence with high average local representation weight (ALRW) scores.ResultsWe have constructed multiple genotype-phenotype datasets displaying commendable classification performance in comparison with random genomic sequences, particularly in the HERV dataset, which achieved binary and multi-classification accuracies and F1 values exceeding 0.935 and 0.888, respectively. Notably, the fine-tuning of the HERV dataset not only improved our ability to identify and distinguish diverse information types within DNA sequences but also successfully identified specific motifs associated with neurological disorders and cancers in regions with high ALRW scores. Subsequent analysis of these motifs shed light on the adaptive responses of species to environmental pressures and their co-evolution with pathogens.ConclusionsThese findings highlight the potential of pre-trained genomic models in learning DNA sequence representations, particularly when utilizing the HERV dataset, and provide valuable insights for future research endeavors. This study represents an innovative strategy that combines pre-trained genomic model representations with classical methods for analyzing the functionality of genome sequences, thereby promoting cross-fertilization between genomics and artificial intelligence.
引用
收藏
页数:21
相关论文
共 56 条
  • [1] TBP-related factors: a paradigm of diversity in transcription initiation
    Akhtar, Waseem
    Veenstra, Gert Jan C.
    [J]. CELL AND BIOSCIENCE, 2011, 1
  • [2] Bénit L, 1999, J VIROL, V73, P3301
  • [3] An early cell shape transition drives evolutionary expansion of the human forebrain
    Benito-Kwiecinski, Silvia
    Giandomenico, Stefano L.
    Sutcliffe, Magdalena
    Riis, Erlend S.
    Freire-Pritchett, Paula
    Kelava, Iva
    Wunderlich, Stephanie
    Martin, Ulrich
    Wray, Gregory A.
    McDole, Kate
    Lancaster, Madeline A.
    [J]. CELL, 2021, 184 (08) : 2084 - +
  • [4] Safety of Targeting ROR1 in Primates with Chimeric Antigen Receptor-Modified T Cells
    Berger, Carolina
    Sommermeyer, Daniel
    Hudecek, Michael
    Berger, Michael
    Balakrishnan, Ashwini
    Paszkiewicz, Paulina J.
    Kosasih, Paula L.
    Rader, Christoph
    Riddell, Stanley R.
    [J]. CANCER IMMUNOLOGY RESEARCH, 2015, 3 (02) : 206 - 216
  • [5] JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles
    Castro-Mondragon, Jaime A.
    Riudavets-Puig, Rafael
    Rauluseviciute, Ieva
    Lemma, Roza Berhanu
    Turchi, Laura
    Blanc-Mathieu, Romain
    Lucas, Jeremy
    Boddie, Paul
    Khan, Aziz
    Perez, Nicolas Manosalva
    Fornes, Oriol
    Leung, Tiffany Y.
    Aguirre, Alejandro
    Hammal, Fayrouz
    Schmelter, Daniel
    Baranasic, Damir
    Ballester, Benoit
    Sandelin, Albin
    Lenhard, Boris
    Vandepoele, Klaas
    Wasserman, Wyeth W.
    Parcy, Francois
    Mathelier, Anthony
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D165 - D173
  • [6] Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly
    Chai, Guoliang
    Webb, Alice
    Li, Chen
    Antaki, Danny
    Lee, Sangmoon
    Breuss, Martin W.
    Lang, Nhi
    Stanley, Valentina
    Anzenberg, Paula
    Yang, Xiaoxu
    Marshall, Trevor
    Gaffney, Patrick
    Wierenga, Klaas J.
    Chung, Brian Hon-Yin
    Tsang, Mandy Ho-Yin
    Pais, Lynn S.
    Lovgren, Alysia Kern
    VanNoy, Grace E.
    Rehm, Heidi L.
    Mirzaa, Ghayda
    Leon, Eyby
    Diaz, Jullianne
    Neumann, Alexander
    Kalverda, Arnout P.
    Manfield, Iain W.
    Parry, David A.
    Logan, Clare, V
    Johnson, Colin A.
    Bonthron, David T.
    Valleley, Elizabeth M. A.
    Issa, Mahmoud Y.
    Abdel-Ghafar, Sherif F.
    Abdel-Hamid, Mohamed S.
    Jennings, Patricia
    Zaki, Maha S.
    Sheridan, Eamonn
    Gleeson, Joseph G.
    [J]. NEURON, 2021, 109 (02) : 241 - +
  • [7] Accurate proteome-wide missense variant effect prediction with AlphaMissense
    Cheng, Jun
    Novati, Guido
    Pan, Joshua
    Bycroft, Clare
    Zemgulyte, Akvile
    Applebaum, Taylor
    Pritzel, Alexander
    Wong, Lai Hong
    Zielinski, Michal
    Sargeant, Tobias
    Schneider, Rosalia G.
    Senior, Andrew W.
    Jumper, John
    Hassabis, Demis
    Kohli, Pushmeet
    Avsec, Ziga
    [J]. SCIENCE, 2023, 381 (6664) : 1303 - +
  • [8] Dalla-Torre H, 2023, bioRxiv, V2011
  • [9] Ding J., 2023, arXiv
  • [10] Identification and evolution of transcription factors RHR gene family (NFAT and RBPJ) involving lamprey (Lethenteron reissneri) innate immunity
    Duan, Xuyuan
    Lv, Menggang
    Liu, Aijia
    Pang, Yue
    Li, Qingwei
    Su, Peng
    Gou, Meng
    [J]. MOLECULAR IMMUNOLOGY, 2021, 138 : 38 - 47