Machine Learning Predicts Conversion from Normal Aging to Mild Cognitive Impairment Using Medical History, APOE Genotype, and Neuropsychological Assessment

被引:2
作者
Prabhakaran, Divya [1 ,2 ]
Grant, Caroline [2 ]
Pedraza, Otto [3 ]
Caselli, Richard [4 ]
Athreya, Arjun P. [2 ,5 ]
Chandler, Melanie [1 ,3 ,5 ]
机构
[1] Mayo Clin, Ctr Individualized Med, Jacksonville, FL USA
[2] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Rochester, MN USA
[3] Mayo Clin, Dept Psychiat & Psychol, Jacksonville, FL USA
[4] Mayo Clin, Dept Neurol, Phoenix, AZ USA
[5] Mayo Clin, Dept Psychiat & Psychol, Rochester, MN USA
基金
美国国家卫生研究院;
关键词
Aging; Alzheimer's disease; APOE; machine learning; mild cognitive impairment; neuropsychology; ALZHEIMERS-DISEASE; DEMENTIA; DECLINE; PROGRESSION; DIAGNOSIS; INSTITUTE; RISK;
D O I
10.3233/JAD-230556
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Identifying individuals at risk for mild cognitive impairment (MCI) is of urgent clinical need. Objective: This study aimed to determine whether machine learning approaches could harness longitudinal neuropsychology measures, medical data, and APOE epsilon 4 genotype to identify individuals at risk of MCI 1 to 2 years prior to diagnosis. Methods: Data from 676 individuals who participated in the 'APOE in the Predisposition to, Protection from and Prevention of Alzheimer's Disease' longitudinal study (N= 66 who converted to MCI) were utilized in supervised machine learning algorithms to predict conversion to MCI. Results: A random forest algorithm predicted conversion 1-2 years prior to diagnosis with 97% accuracy (p = 0.0026). The global minima (each individual's lowest score) of memory measures from the 'Rey Auditory Verbal Learning Test' and the 'Selective Reminding Test' were the strongest predictors. Conclusions: This study demonstrates the feasibility of using machine learning to identify individuals likely to convert from normal cognition to MCI.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 33 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review [J].
Ansart, Manon ;
Epelbaum, Stephane ;
Bassignana, Giulia ;
Bone, Alexandre ;
Bottani, Simona ;
Cattai, Tiziana ;
Couronne, Raphael ;
Faouzi, Johann ;
Koval, Igor ;
Louis, Maxime ;
Thibeau-Sutre, Elina ;
Wen, Junhao ;
Wild, Adam ;
Burgos, Ninon ;
Dormont, Didier ;
Colliot, Olivier ;
Durrleman, Stanley .
MEDICAL IMAGE ANALYSIS, 2021, 67
[3]   Augmentation of Physician Assessments with Multi-Omics Enhances Predictability of Drug Response: A Case Study of Major Depressive Disorder [J].
Athreya, Arjun ;
Iyer, Ravishankar ;
Neavin, Drew ;
Wang, Liewei ;
Weinshilboum, Richard ;
Kaddurah-Daouk, Rima ;
Rush, John ;
Frye, Mark ;
Bobo, William .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018, 13 (03) :20-31
[4]  
Caruana R., 2008, P 25 INT C MACHINE L
[5]   Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre-mild cognitive impairment [J].
Caselli, Richard J. ;
Chen, Kewei ;
Lee, Wendy ;
Alexander, Gene E. ;
Reiman, Eric M. .
ARCHIVES OF NEUROLOGY, 2008, 65 (09) :1231-1236
[6]   Cognitive domain decline in healthy apolipoprotein E ε4 Homozygotes before the diagnosis of mild cognitive impairment [J].
Caselli, Richard J. ;
Reiman, Eric M. ;
Locke, Dona E. C. ;
Hutton, Michael L. ;
Hentz, Joseph G. ;
Hoffman-Snyder, Charlene ;
Woodruff, Bryan K. ;
Alexander, Gene E. ;
Osborne, David .
ARCHIVES OF NEUROLOGY, 2007, 64 (09) :1306-1311
[7]   Neuropsychological decline up to 20 years before incident mild cognitive impairment [J].
Caselli, Richard J. ;
Langlais, Blake T. ;
Dueck, Amylou C. ;
Chen, Yinghua ;
Su, Yi ;
Locke, Dona E. C. ;
Woodruff, Bryan K. ;
Reiman, Eric M. .
ALZHEIMERS & DEMENTIA, 2020, 16 (03) :512-523
[8]   Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele [J].
Caselli, RJ ;
Reiman, EM ;
Osborne, D ;
Hentz, JG ;
Baxter, LC ;
Hernandez, JL ;
Alexander, GG .
NEUROLOGY, 2004, 62 (11) :1990-1995
[9]   Cross-trial prediction of treatment outcome in depression: a machine learning approach [J].
Chekroud, Adam Mourad ;
Zotti, Ryan Joseph ;
Shehzad, Zarrar ;
Gueorguieva, Ralitza ;
Johnson, Marcia K. ;
Trivedi, Madhukar H. ;
Cannon, Tyrone D. ;
Krystal, John Harrison ;
Corlett, Philip Robert .
LANCET PSYCHIATRY, 2016, 3 (03) :243-250
[10]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+