Physics-informed neural networks for an optimal counterdiabatic quantum computation

被引:1
作者
Ferrer-Sanchez, Antonio [1 ,2 ]
Flores-Garrigos, Carlos [1 ]
Hernani-Morales, Carlos [1 ,3 ]
Orquin-Marques, Jose J. [1 ]
Hegade, Narendra N. [4 ]
Cadavid, Alejandro Gomez [4 ]
Montalban, Iraitz [4 ]
Solano, Enrique [4 ]
Vives-Gilabert, Yolanda [1 ]
Martin-Guerrero, Jose D. [1 ,2 ,3 ]
机构
[1] Univ Valencia, Elect Engn Dept, ETSE UV, Avgda Univ S-N, Burjassot 46100, Valencia, Spain
[2] Valencian Grad Sch & Res Network Artificial Intell, Valencia, Spain
[3] Quantum Spain, Burjassot 46100, Valencia, Spain
[4] Kipu Quantum, Greifswalderstr 226, D-10405 Berlin, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 02期
关键词
physics-informed neural networks; quantum computing; shortcuts to adiabaticity; counterdiabatic driving; Pauli operators; OPTIMIZATION; ALGORITHM; FRAMEWORK; MECHANICS; MODEL;
D O I
10.1088/2632-2153/ad450f
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel methodology that leverages physics-informed neural networks to optimize quantum circuits in systems with N Q qubits by addressing the counterdiabatic (CD) protocol is introduced. The primary purpose is to employ physics-inspired deep learning techniques for accurately modeling the time evolution of various physical observables within quantum systems. To achieve this, we integrate essential physical information into an underlying neural network to effectively tackle the problem. Specifically, the imposition of the solution to meet the principle of least action, along with the hermiticity condition on all physical observables, among others, ensuring the acquisition of appropriate CD terms based on underlying physics. This approach provides a reliable alternative to previous methodologies relying on classical numerical approximations, eliminating their inherent constraints. The proposed method offers a versatile framework for optimizing physical observables relevant to the problem, such as the scheduling function, gauge potential, temporal evolution of energy levels, among others. This methodology has been successfully applied to 2-qubit representing H 2 molecule using the STO-3G basis, demonstrating the derivation of a desirable decomposition for non-adiabatic terms through a linear combination of Pauli operators. This attribute confers significant advantages for practical implementation within quantum computing algorithms.
引用
收藏
页数:21
相关论文
共 78 条
[1]  
Adcock J, 2015, Arxiv, DOI arXiv:1512.02900
[2]   Quantum speed-up for unsupervised learning [J].
Aimeur, Esma ;
Brassard, Gilles ;
Gambs, Sebastien .
MACHINE LEARNING, 2013, 90 (02) :261-287
[3]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]   Quantum Algorithm for Tree Size Estimation, with Applications to Backtracking and 2-Player Games [J].
Ambainis, Andris ;
Kokainis, Martins .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :989-1002
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   ADIABATIC QUANTUM TRANSPORT IN MULTIPLY CONNECTED SYSTEMS [J].
AVRON, JE ;
RAVEH, A ;
ZUR, B .
REVIEWS OF MODERN PHYSICS, 1988, 60 (04) :873-915
[7]   The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective [J].
Bapst, V. ;
Foini, L. ;
Krzakala, F. ;
Semerjian, G. ;
Zamponi, F. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 523 (03) :127-205
[8]   Counterdiabatic optimized driving in quantum phase sensitive models [J].
Barone, Francesco Pio ;
Kiss, Oriel ;
Grossi, Michele ;
Vallecorsa, Sofia ;
Mandarino, Antonio .
NEW JOURNAL OF PHYSICS, 2024, 26 (03)
[9]  
Barraza N, 2023, Arxiv, DOI arXiv:2310.02248
[10]   A model of inductive bias learning [J].
Baxter, J .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 :149-198