TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images

被引:2
|
作者
Cao, Jingyi [1 ]
You, Yanan [1 ]
Li, Chao [1 ]
Liu, Jun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; feature interpretability; image registration; keypoint detection; remote sensing; DESCRIPTORS;
D O I
10.1109/TGRS.2024.3352899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] SPANet: Successive Pooling Attention Network for Semantic Segmentation of Remote Sensing Images
    Sun, Le
    Cheng, Shiwei
    Zheng, Yuhui
    Wu, Zebin
    Zhang, Jianwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4045 - 4057
  • [32] LSENet: Local and Spatial Enhancement to Improve the Semantic Segmentation of Remote Sensing Images
    Ding, Rong-Xing
    Xu, Yi-Han
    Liu, Jie
    Zhou, Wen
    Chen, Chen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [33] Edge Detection Guide Network for Semantic Segmentation of Remote-Sensing Images
    Jin, Jianhui
    Zhou, Wujie
    Yang, Rongwang
    Ye, Lv
    Yu, Lu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [34] Semantic Segmentation Network of Remote Sensing Images With Dynamic Loss Fusion Strategy
    Liu, Wenjie
    Zhang, Yongjun
    Yan, Jun
    Zou, Yongjie
    Cui, Zhongwei
    IEEE ACCESS, 2021, 9 : 70406 - 70418
  • [35] Avoiding Negative Transfer for Semantic Segmentation of Remote Sensing Images
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Xiao, Rong
    Li, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Context Enhancing Representation for Semantic Segmentation in Remote Sensing Images
    Fang, Leyuan
    Zhou, Peng
    Liu, Xinxin
    Ghamisi, Pedram
    Chen, Siwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4138 - 4152
  • [37] Gaussian Dynamic Convolution for Semantic Segmentation in Remote Sensing Images
    Feng, Mingzhe
    Sun, Xin
    Dong, Junyu
    Zhao, Haoran
    REMOTE SENSING, 2022, 14 (22)
  • [38] Graph of Visual Words for Semantic Annotation of Remote Sensing Images
    Farah, Mohamed
    Amiri, Khitem
    Farah, Imed Riadh
    2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 606 - 612
  • [39] Dual-Range Context Aggregation for Efficient Semantic Segmentation in Remote Sensing Images
    He, Guangjun
    Dong, Zhe
    Feng, Pengming
    Muhtar, Dilxat
    Zhang, Xueliang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [40] Frequency-Driven Edge Guidance Network for Semantic Segmentation of Remote Sensing Images
    Li, Jinsong
    Zhang, Shujun
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    Wang, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9677 - 9693