Physics-informed deep generative learning for quantitative assessment of the retina

被引:7
作者
Brown, Emmeline E. [1 ,2 ]
Guy, Andrew A. [1 ,3 ]
Holroyd, Natalie A. [1 ]
Sweeney, Paul W. [4 ]
Gourmet, Lucie [1 ]
Coleman, Hannah [1 ]
Walsh, Claire [1 ,5 ]
Markaki, Athina E. [3 ]
Shipley, Rebecca [1 ,5 ]
Rajendram, Ranjan [2 ,6 ]
Walker-Samuel, Simon [1 ]
机构
[1] UCL, Ctr Computat Med, London, England
[2] Moorfields Eye Hosp, London, England
[3] Univ Cambridge, Dept Engn, Cambridge, England
[4] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[5] UCL, Dept Mech Engn, London, England
[6] UCL, Inst Ophthalmol, London, England
基金
英国工程与自然科学研究理事会;
关键词
BLOOD-VESSELS; SEGMENTATION; HEALTHY; DIAMETERS; MODELS; IMAGES; FLOW;
D O I
10.1038/s41467-024-50911-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Disruption of retinal vasculature is linked to various diseases, including diabetic retinopathy and macular degeneration, leading to vision loss. We present here a novel algorithmic approach that generates highly realistic digital models of human retinal blood vessels, based on established biophysical principles, including fully-connected arterial and venous trees with a single inlet and outlet. This approach, using physics-informed generative adversarial networks (PI-GAN), enables the segmentation and reconstruction of blood vessel networks with no human input and which out-performs human labelling. Segmentation of DRIVE and STARE retina photograph datasets provided near state-of-the-art vessel segmentation, with training on only a small (n = 100) simulated dataset. Our findings highlight the potential of PI-GAN for accurate retinal vasculature characterization, with implications for improving early disease detection, monitoring disease progression, and improving patient care. Analysis of retinal vasculature is limited by the availability of annotated datasets. Here, the authors show a method for generating synthetic retinal vessel data which is not statistically significantly different from real clinical data.
引用
收藏
页数:14
相关论文
共 72 条
[1]  
Accademic Torents, 2020, DRIVE: Digital Retinal Images for Vessel Extraction
[2]  
Aljuaid Abeer, 2022, SN Comput Sci, V3, P292, DOI [10.1007/s42979-022-01166-1, 10.1007/s42979-022-01166-1]
[3]   A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation [J].
Andreini, Paolo ;
Ciano, Giorgio ;
Bonechi, Simone ;
Graziani, Caterina ;
Lachi, Veronica ;
Mecocci, Alessandro ;
Sodi, Andrea ;
Scarselli, Franco ;
Bianchini, Monica .
ELECTRONICS, 2022, 11 (01)
[4]   Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT [J].
Baumann, Bernhard ;
Potsaid, Benjamin ;
Kraus, Martin F. ;
Liu, Jonathan J. ;
Huang, David ;
Hornegger, Joachim ;
Cable, Alex E. ;
Duker, Jay S. ;
Fujimoto, James G. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (06) :1539-1552
[5]   Diameter Changes of Retinal Vessels in Diabetic Retinopathy [J].
Bek, Toke .
CURRENT DIABETES REPORTS, 2017, 17 (10)
[6]   Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant [J].
Brown, JH ;
West, GB ;
Enquist, BJ .
FUNCTIONAL ECOLOGY, 2005, 19 (04) :735-738
[7]   Distribution Matching Losses Can Hallucinate Features in Medical Image Translation [J].
Cohen, Joseph Paul ;
Luck, Margaux ;
Honari, Sina .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :529-536
[8]   Intra- and inter-operator variability in MRI-based manual segmentation of HCC lesions and its impact on dosimetry [J].
Covert, Elise C. ;
Fitzpatrick, Kellen ;
Mikell, Justin ;
Kaza, Ravi K. ;
Millet, John D. ;
Barkmeier, Daniel ;
Gemmete, Joseph ;
Christensen, Jared ;
Schipper, Matthew J. ;
Dewaraja, Yuni K. .
EJNMMI PHYSICS, 2022, 9 (01)
[9]   Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis [J].
Czako, Cecilia ;
Kovacs, Tibor ;
Ungvari, Zoltan ;
Csiszar, Anna ;
Yabluchanskiy, Andriy ;
Conley, Shannon ;
Csipo, Tamas ;
Lipecz, Agnes ;
Horvath, Hajnalka ;
Sandor, Gabor Laszlo ;
Istvan, Lilla ;
Logan, Trevor ;
Nagy, Zoltan Zsolt ;
Kovacs, Illes .
GEROSCIENCE, 2020, 42 (06) :1499-1525
[10]   Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours [J].
d'Esposito, Angela ;
Sweeney, Paul W. ;
Ali, Morium ;
Saleh, Magdy ;
Ramasawmy, Rajiv ;
Roberts, Thomas A. ;
Agliardi, Giulia ;
Desjardins, Adrien ;
Lythgoe, Mark F. ;
Pedley, R. Barbara ;
Shipley, Rebecca ;
Walker-Samuel, Simon .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (10) :773-787