Mirror symmetry for Berglund-Hübsch Milnor fibers

被引:1
作者
Gammage, Benjamin [1 ]
机构
[1] Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Mirror symmetry; Milnor fiber; Perverse schobers; CATEGORIES; CONSTRUCTION;
D O I
10.1016/j.aim.2024.109563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explain how to calculate the Fukaya category of the Milnor fiber of a Berglund-Hubsch invertible polynomial, proving many cases of a conjecture of Yanki Lekili and Kazushi Ueda on homological mirror symmetry. As usual, we begin by calculating the "very affine" Fukaya category; afterwards, we deform it, generalizing an earlier calculation of David Nadler. The main step of our calculation may be understood as determining a certain canonical extension of a perverse schober. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 54 条
  • [1] Weber CA, 2018, Arxiv, DOI arXiv:1809.03472
  • [2] Abouzaid M, 2023, Arxiv, DOI arXiv:2111.06543
  • [3] Homogeneous coordinate rings and mirror symmetry for toric varieties
    Abouzaid, Mohammed
    [J]. GEOMETRY & TOPOLOGY, 2006, 10 : 1097 - 1156
  • [4] Alvarez-Gavela D, 2022, Arxiv, DOI arXiv:2011.08962
  • [5] BEILINSON AA, 1987, LECT NOTES MATH, V1289, P42
  • [6] A GENERALIZED CONSTRUCTION OF MIRROR MANIFOLDS
    BERGLUND, P
    HUBSCH, T
    [J]. NUCLEAR PHYSICS B, 1993, 393 (1-2) : 377 - 391
  • [7] Bondal A., 2006, Oberwolfach Conference Reports, V3, P284
  • [8] Perverse schobers and birational geometry
    Bondal, Alexey
    Kapranov, Mikhail
    Schechtman, Vadim
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (01): : 85 - 143
  • [9] Cho CH, 2020, Arxiv, DOI arXiv:2010.09198
  • [10] Cote L., arXiv