Positive solutions of Kirchhoff type problems with critical growth on exterior domains

被引:1
作者
Dai, Ting-Ting [1 ]
Ou, Zeng-Qi [1 ]
Tang, Chun-Lei [1 ]
Lv, Ying [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Sobolev critical exponent; Barycenter function; Brouwer degree theory; Exterior domain; SUPERCRITICAL ELLIPTIC PROBLEMS; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; EXISTENCE; EQUATIONS; MULTIPLICITY;
D O I
10.1007/s13324-024-00944-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions for a class of Kirchhoff equation with critical growth - a + b |.u|2dx u + V(x)u = u5 in , u. D1,2 0 (), where a > 0, b > 0, V. L 3 2 () is a given nonnegative function and . R3 is an exterior domain, that is, an unbounded domain with smooth boundary. = O such that R3\ non-empty and bounded. By using barycentric functions and Brouwer degree theory to prove that there exists a positive solution u. D1,2 0 () if R3\ is contained in a small ball.
引用
收藏
页数:32
相关论文
共 34 条
[1]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[2]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[3]  
Bernstein S., 1940, IZV AKAD NAUK SSSR M, V4, P17
[4]  
Cavalcanti M., 2001, Adv. Differ. Equ., V6, P701
[5]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[6]   Positive solutions for Kirchhoff equation in exterior domains [J].
Chen, Peng ;
Liu, Xiaochun .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
[7]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[8]   Fast and slow decay solutions for supercritical elliptic problems in exterior domains [J].
Davila, Juan ;
del Pino, Manuel ;
Musso, Monica ;
Wei, Juncheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (04) :453-480
[9]   Regular solutions to a supercritical elliptic problem in exterior domains [J].
Davila, Juan ;
Lopez, Luis F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (04) :701-727
[10]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527