An adaptive unscented particle filter for a nonlinear fractional-order system with unknown fractional-order and unknown parameters

被引:1
作者
Jiao, Zhiyuan [1 ]
Gao, Zhe [1 ,2 ,3 ]
Chai, Haoyu [1 ]
Xiao, Shasha [1 ]
Jia, Kai [1 ]
机构
[1] Liaoning Univ, Sch Math & Stat, Shenyang 110036, Peoples R China
[2] Liaoning Univ, Coll Light Ind, Shenyang 110036, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
关键词
Adaptive unscented particle filter; Nonlinear fractional-order systems; Unknown order; Unknown parameters; State estimation; KALMAN FILTER; CHARGE ESTIMATION; STATE; TRACKING; OBSERVER; DESIGN;
D O I
10.1016/j.sigpro.2024.109443
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unscented particle filter (UPF) is proposed for a nonlinear fractional -order system (NFOS) with an unknown order (UO) and unknown parameters. The Gr & uuml;nwald-Letnikov difference is used to discretize the continuous -time NFOS and the corresponding difference equation is acquired. For each sampled particle, a unscented transformation is applied, and the particles are afterwards optimized using a resampling algorithm. Furthermore, the augmented equations of the states, UO, and unknown parameters are established by an augmented vector method. The proposed fractional -order UPF is more accurate in estimating states than the fractional -order unscented Kalman filter and the fractional -order particle filter. Besides, the adaptive fractionalorder UPF effectively estimate the UO and unknown parameters. Finally, two numerical examples and a practical example are used to verify the effectiveness of the proposed algorithm.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] Multi-objective optimal design of a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system
    Ansarian, A.
    Mahmoodabadi, M. J.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 141
  • [2] An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method
    Bi, Haiyun
    Ma, Jianwen
    Wang, Fangjian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (02) : 447 - 459
  • [3] Improved particle filter for nonlinear problems
    Carpenter, J
    Clifford, P
    Fearnhead, P
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) : 2 - 7
  • [4] Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions
    Challa, S
    Bar-Shalom, Y
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2000, 36 (01) : 309 - 315
  • [5] Probability Density Estimation With Tunable Kernels Using Orthogonal Forward Regression
    Chen, Sheng
    Hong, Xia
    Harris, Chris J.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (04): : 1101 - 1114
  • [6] A variational marginalized particle filter for jump Markov nonlinear systems with unknown transition probabilities
    Cheng, Cheng
    Tourneret, Jean-Yves
    [J]. SIGNAL PROCESSING, 2021, 188
  • [7] Output feedback control and output feedback finite-time control for nonlinear fractional-order interconnected systems
    Dinh Cong Huong
    Le Ba Thong
    Dao Thi Hai Yen
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06)
  • [8] On event-triggered robust observer-based control problem of one-sided Lipschitz time-delay systems
    Dinh, Cong Huong
    [J]. ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2234 - 2243
  • [9] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [10] Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon
    Fang, Huazhen
    Tian, Ning
    Wang, Yebin
    Zhou, MengChu
    Haile, Mulugeta A.
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 401 - 417