An adaptive unscented particle filter for a nonlinear fractional-order system with unknown fractional-order and unknown parameters

被引:1
|
作者
Jiao, Zhiyuan [1 ]
Gao, Zhe [1 ,2 ,3 ]
Chai, Haoyu [1 ]
Xiao, Shasha [1 ]
Jia, Kai [1 ]
机构
[1] Liaoning Univ, Sch Math & Stat, Shenyang 110036, Peoples R China
[2] Liaoning Univ, Coll Light Ind, Shenyang 110036, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
关键词
Adaptive unscented particle filter; Nonlinear fractional-order systems; Unknown order; Unknown parameters; State estimation; KALMAN FILTER; CHARGE ESTIMATION; STATE; TRACKING; OBSERVER; DESIGN;
D O I
10.1016/j.sigpro.2024.109443
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unscented particle filter (UPF) is proposed for a nonlinear fractional -order system (NFOS) with an unknown order (UO) and unknown parameters. The Gr & uuml;nwald-Letnikov difference is used to discretize the continuous -time NFOS and the corresponding difference equation is acquired. For each sampled particle, a unscented transformation is applied, and the particles are afterwards optimized using a resampling algorithm. Furthermore, the augmented equations of the states, UO, and unknown parameters are established by an augmented vector method. The proposed fractional -order UPF is more accurate in estimating states than the fractional -order unscented Kalman filter and the fractional -order particle filter. Besides, the adaptive fractionalorder UPF effectively estimate the UO and unknown parameters. Finally, two numerical examples and a practical example are used to verify the effectiveness of the proposed algorithm.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An adaptive unscented Kalman filter for a nonlinear fractional-order system with unknown order
    Miao, Yue
    Gao, Zhe
    Chen, Xiaojiao
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 874 - 879
  • [2] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427
  • [3] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Kai Chen
    Rongnian Tang
    Chuang Li
    Pengna Wei
    Nonlinear Dynamics, 2018, 94 : 415 - 427
  • [4] Adaptive fractional-order unscented Kalman filter with unknown noise statistics
    Xiao, Kui
    Yu, Wentao
    Qu, Feng
    Lian, Jianfang
    Liu, Chaofan
    Liu, Weirong
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) : 2519 - 2536
  • [5] Synchronization of a Fractional-order System with Unknown Parameters
    Yang, Xiaoya
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 796 - 799
  • [6] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [7] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Abdolrahman Ramezani
    Behrouz Safarinejadian
    Circuits, Systems, and Signal Processing, 2018, 37 : 3756 - 3784
  • [8] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Miao, Yue
    Gao, Zhe
    Yang, Chuang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (04) : 1283 - 1293
  • [9] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Yue Miao
    Zhe Gao
    Chuang Yang
    International Journal of Control, Automation and Systems, 2022, 20 : 1283 - 1293
  • [10] Adaptive fractional-order Kalman filters for continuous-time nonlinear fractional-order systems with unknown parameters and fractional-orders
    Yang, Chuang
    Gao, Zhe
    Li, Xuanang
    Huang, Xiaomin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (13) : 2777 - 2797