Self-supervised monocular depth estimation on water scenes via specular reflection prior

被引:7
|
作者
Lu, Zhengyang [1 ]
Chen, Ying [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Monocular depth estimation; Self-supervision; Re-projection error; Specular reflection;
D O I
10.1016/j.dsp.2024.104496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monocular depth estimation from a single image is an ill -posed problem for computer vision due to insufficient reliable cues as the prior knowledge. Besides the inter -frame supervision, namely stereo and adjacent frames, extensive prior information is available in the same frame. Reflections from specular surfaces, informative intraframe priors, enable us to reformulate the ill -posed depth estimation task as a multi -view synthesis. This paper proposes the first self -supervision for deep -learning depth estimation on water scenes via intra-frame priors, known as reflection supervision and geometrical constraints. In the first stage, a water segmentation network is performed to separate the reflection components from the entire image. Next, we construct a self -supervised framework to predict the target appearance from reflections, perceived as other perspectives. The photometric reprojection error, incorporating SmoothL1 and a novel photometric adaptive SSIM, is formulated to optimize pose and depth estimation by aligning the transformed virtual depths and source ones. As a supplement, the water surface is determined from real and virtual camera positions, which complement the depth of the water area. Furthermore, to alleviate these laborious ground truth annotations, we introduce a large-scale water reflection scene (WRS) dataset rendered from Unreal Engine 4. Extensive experiments on the WRS dataset prove the feasibility of the proposed method compared to state-of-the-art depth estimation techniques.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Self-Supervised Monocular Scene Decomposition and Depth Estimation
    Safadoust, Sadra
    Guney, Fatma
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 627 - 636
  • [22] Joint Self-Supervised Monocular Depth Estimation and SLAM
    Xing, Xiaoxia
    Cai, Yinghao
    Lu, Tao
    Yang, Yiping
    Wen, Dayong
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4030 - 4036
  • [23] Learn to Adapt for Self-Supervised Monocular Depth Estimation
    Sun, Qiyu
    Yen, Gary G.
    Tang, Yang
    Zhao, Chaoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15647 - 15659
  • [24] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE Transactions on Image Processing, 2022, 31 : 3251 - 3266
  • [25] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3251 - 3266
  • [26] Self-supervised monocular depth estimation for gastrointestinal endoscopy
    Liu, Yuying
    Zuo, Siyang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [27] Adaptive Self-supervised Depth Estimation in Monocular Videos
    Mendoza, Julio
    Pedrini, Helio
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 687 - 699
  • [28] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [29] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [30] Self-Supervised Monocular Depth Estimation With Extensive Pretraining
    Choi, Hyukdoo
    IEEE ACCESS, 2021, 9 : 157236 - 157246