Nonsinusoidal current-phase relations in semiconductor-superconductor- ferromagnetic insulator devices

被引:1
作者
Maiani A. [1 ]
Flensberg K. [1 ]
Leijnse M. [1 ,2 ]
Schrade C. [1 ]
Vaitiekėnas S. [1 ]
Seoane Souto R. [1 ,2 ]
机构
[1] Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen
[2] Division of Solid State Physics and NanoLund, Lund University, Lund
基金
英国科研创新办公室; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
Ferromagnetic materials - Ferromagnetism - Josephson junction devices - Magnetization - Quantum optics - Semiconductor junctions - Superconducting materials;
D O I
10.1103/PhysRevB.107.245415
中图分类号
学科分类号
摘要
Coherent tunneling processes of multiple Cooper pairs across a Josephson junction give rise to high harmonics in the current phase relation. In this work, we propose and study Josephson junctions based on semiconductor-superconductor-ferromagnetic insulator heterostructures to engineer nonsinusoidal current-phase relations. The gate-tunability of the charge carriers' density in the semiconductor, together with the adjustable magnetization of the ferromagnetic insulator, provides control over the content of the supercurrent harmonics. At finite exchange field, hybrid junctions can undergo a 0 - π phase transition, resulting in a supercurrent reversal. Close to the transition, single-pair tunneling is suppressed and the current-phase relation is dominated by the second-harmonic, indicating transport primarily by pairs of Cooper pairs. Finally, we demonstrate that noncollinear magnetization or spin-orbit coupling in the leads and the junction can lead to a gate-tunable Josephson diode effect with efficiencies of up to ∼30%. © 2023 authors. Published by the American Physical Society.
引用
收藏
相关论文
共 88 条
[1]  
Golubov A. A., Kupriyanov M. Y., Il'ichev E., The current-phase relation in Josephson junctions, Rev. Mod. Phys, 76, (2004)
[2]  
Beenakker C. W. J., Universal Limit of Critical-Current Fluctuations in Mesoscopic Josephson Junctions, Phys. Rev. Lett, 67, (1991)
[3]  
Bagwell P. F., Suppression of the Josephson current through a narrow, mesoscopic, semiconductor channel by a single impurity, Phys. Rev. B, 46, (1992)
[4]  
Sochnikov I., Maier L., Watson C. A., Kirtley J. R., Gould C., Tkachov G., Hankiewicz E. M., Brune C., Buhmann H., Molenkamp L. W., Moler K. A., Nonsinusoidal Current-Phase Relationship in Josephson Junctions from the 3D Topological Insulator HgTe, Phys. Rev. Lett, 114, (2015)
[5]  
English C. D., Hamilton D. R., Chialvo C., Moraru I. C., Mason N., Van Harlingen D. J., Observation of nonsinusoidal current-phase relation in graphene Josephson junctions, Phys. Rev. B, 94, (2016)
[6]  
Nanda G., Aguilera-Servin J. L., Rakyta P., Kormanyos A., Kleiner R., Koelle D., Watanabe K., Taniguchi T., Vandersypen L. M. K., Goswami S., Current-phase relation of ballistic graphene Josephson junctions, Nano Lett, 17, (2017)
[7]  
Spanton E. M., Deng M., Vaitiekenas S., Krogstrup P., Nygard J., Marcus C. M., Moler K. A., Current-phase relations of few-mode inas nanowire Josephson junctions, Nat. Phys, 13, (2017)
[8]  
Schindler F., Wang Z., Vergniory M. G., Cook A. M., Murani A., Sengupta S., Kasumov A. Y., Deblock R., Jeon S., Drozdov I., Bouchiat H., Gueron S., Yazdani A., Bernevig B. A., Neupert T., Higher-order topology in bismuth, Nat. Phys, 14, (2018)
[9]  
Kayyalha M., Kazakov A., Miotkowski I., Khlebnikov S., Rokhinson L. P., Chen Y. P., Highly skewed current-phase relation in superconductor-topological insulator-superconductor Josephson junctions, npj Quantum Mater, 5, (2020)
[10]  
Nichele F., Portoles E., Fornieri A., Whiticar A. M., Drachmann A. C. C., Gronin S., Wang T., Gardner G. C., Thomas C., Hatke A. T., Manfra M. J., Marcus C. M., Relating Andreev Bound States and Supercurrents in Hybrid Josephson Junctions, Phys. Rev. Lett, 124, (2020)