Polarization image fusion method based on polarization saliency with generator adversarial network

被引:4
作者
Duan, Jin [1 ,2 ]
Song, Jingyuan [1 ]
Zhu, Yong [1 ]
Zhang, Hao [1 ]
Liu, Ju [1 ]
Zheng, Yue [1 ]
机构
[1] Changchun Univ Sci & Technol, Elect & Informat Engn Inst, Changchun 130022, Peoples R China
[2] Changchun Univ Sci & Technol, Space Optoelect Technol Inst, Changchun 130022, Peoples R China
关键词
Image fusion; Polarization; Polarization saliency; Information decision blocks; MULTISCALE TRANSFORM; OBJECTS;
D O I
10.1016/j.optlaseng.2024.108159
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Aiming at the problem that the polarization image fusion process does not make good use of the polarization imaging characteristics, we propose a polarization image fusion method based on polarization saliency. On the one hand, we propose a new definition of physical property characterization based on polarization properties:polarization saliency. We construct it from three perspectives: image difference, position, and contrast. On the other hand, we propose a polarization saliency based fusion network (PSGGAN). The information decision block is constructed to enhance the polarization salient information and texture detail information of the source image. The loss function based on polarization saliency is designed to regulate the pixel distribution constraints and the degree of polarization information preservation. Qualitative and quantitative experiments demonstrate the superiority of our PSGGAN over state -of -the -art methods in terms of visual effects and quantitative metrics.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment [J].
Bosse, Sebastian ;
Maniry, Dominique ;
Mueller, Klaus-Robert ;
Wiegand, Thomas ;
Samek, Wojciech .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :206-219
[2]   Infrared and visible image fusion based on target-enhanced multiscale transform decomposition [J].
Chen, Jun ;
Li, Xuejiao ;
Luo, Linbo ;
Mei, Xiaoguang ;
Ma, Jiayi .
INFORMATION SCIENCES, 2020, 508 :64-78
[3]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[4]   Infrared and visible images fusion based on RPCA and NSCT [J].
Fu, Zhizhong ;
Wang, Xue ;
Xu, Jin ;
Zhou, Ning ;
Zhao, Yufei .
INFRARED PHYSICS & TECHNOLOGY, 2016, 77 :114-123
[5]   Highlight-Aware Two-Stream Network for Single-Image SVBRDF Acquisition [J].
Guo, Jie ;
Lai, Shuichang ;
Tao, Chengzhi ;
Cai, Yuelong ;
Wang, Lei ;
Guo, Yanwen ;
Yan, Ling-Qi .
ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04)
[6]   Unsupervised extraction of visual attention objects in color images [J].
Han, JW ;
Ngan, KN ;
Li, MJ ;
Zhang, HH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2006, 16 (01) :141-145
[7]   Polarization-based material classification technique using passive millimeter-wave polarimetric imagery [J].
Hu, Fei ;
Cheng, Yayun ;
Gui, Liangqi ;
Wu, Liang ;
Zhang, Xinyi ;
Peng, Xiaohui ;
Su, Jinlong .
APPLIED OPTICS, 2016, 55 (31) :8690-8697
[8]   The multiscale directional bilateral filter and its application to multisensor image fusion [J].
Hu, Jianwen ;
Li, Shutao .
INFORMATION FUSION, 2012, 13 (03) :196-206
[9]   A Polarization Image Fusion Approach Using Local Energy and MDLatLRR Algorithm [J].
Hu, Shimin ;
Meng, Jin ;
Zhang, Peng ;
Miao, Lei ;
Wang, Shifeng .
JOURNAL OF RUSSIAN LASER RESEARCH, 2022, 43 (06) :715-724
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269