Accuracy of the Gross-Pitaevskii Equation in a Double-Well Potential

被引:1
作者
Sakhel, Asaad R. [1 ]
Ragan, Robert J. [2 ]
Mullin, William J. [3 ]
机构
[1] Al Balqa Appl Univ, Fac Sci, Dept Phys, Salt 19117, Jordan
[2] Univ Wisconsin La Crosse, Dept Phys, La Crosse, WI 54601 USA
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
关键词
Bose condensate; Cold atoms; Quantum fluids; Nonlinear dynamics; Gross-Pitaevskii equation; SPONTANEOUS SYMMETRY-BREAKING; BOSE-EINSTEIN CONDENSATE; MEAN-FIELD; STATES;
D O I
10.1007/s10909-024-03192-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Gross-Pitaevskii equation (GPE) in a double-well potential produces solutions that break the symmetry of the underlying non-interacting Hamiltonian, i.e., asymmetric solutions. The GPE is derived from the more general second-quantized Fock Schro<spacing diaeresis>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\textrm{o}}$$\end{document}dinger equation (FSE). We investigate whether such solutions appear in the more general case or are artifacts of the GPE. We use two-mode analyses for a variational treatment of the GPE and to treat the Fock equation. An exact diagonalization of the FSE in dual condensates yields degenerate ground states that are very accurately fitted by phase-state representations of the degenerate asymmetric states found in the GPE. The superposition of degenerate asymmetrical states forms a cat state. An alternative form of cat state results from a change of the two-mode basis set.
引用
收藏
页码:683 / 697
页数:15
相关论文
共 43 条
[1]   Efficient manipulation of Bose-Einstein Condensates in a double-well potential [J].
Adriazola, Jimmie ;
Goodman, Roy ;
Kevrekidis, Panayotis .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 122
[2]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[3]  
Boris A., 2015, NAT PHOTONICS, V9, P287, DOI [10.1038/nphoton.2015.66, DOI 10.1038/NPHOTON.2015.66]
[4]   Symmetry-breaking instability of multimode vector solitons [J].
Cambournac, C ;
Sylvestre, T ;
Maillotte, H ;
Vanderlinden, B ;
Kockaert, P ;
Emplit, P ;
Haelterman, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :083901/1-083901/4
[5]   Best mean-field for condensates [J].
Cederbaum, LS ;
Streltsov, AI .
PHYSICS LETTERS A, 2003, 318 (06) :564-569
[6]   Chaotic self-trapping of a weakly irreversible double Bose condensate [J].
Coullet, P ;
Vandenberghe, N .
PHYSICAL REVIEW E, 2001, 64 (02) :4
[7]   States without a linear counterpart in Bose-Einstein condensates [J].
D'Agosta, R ;
Presilla, C .
PHYSICAL REVIEW A, 2002, 65 (04) :436091-436097
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   Zero-temperature, mean-field theory of atomic Bose-Einstein condensates [J].
Edwards, M ;
Dodd, RJ ;
Clark, CW ;
Burnett, K .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (04) :553-565
[10]  
Fetter A., 2003, Dover Books on Physics