Irrigation increases and stabilizes mosquito populations and increases West Nile virus incidence

被引:1
作者
Kovach, Tony J. [1 ]
Kilpatrick, A. Marm [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Irrigation; Vector-borne disease; Mosquitoes; Climate; Land use; CULEX-TARSALIS DIPTERA; INTERMITTENT IRRIGATION; RICE FIELDS; KERN-COUNTY; LAND-COVER; CULICIDAE; LANDSCAPE; ABUNDANCE; CALIFORNIA; ASSOCIATIONS;
D O I
10.1038/s41598-024-70592-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Humans have greatly altered earth's terrestrial water cycle with the majority of fresh water being used for agriculture. Irrigation changes spatial and temporal water availability and alters mosquito abundance and phenology. Previous studies evaluating the effect of irrigation on mosquito abundance and mosquito-borne disease have shown inconsistent results and little is known about the effect of irrigation on variability in mosquito abundance. We examined the effect of irrigation, climate and land cover on mosquito abundance and human West Nile virus (WNV) disease cases across California. Irrigation made up nearly a third of total water inputs, and exceeded precipitation in some regions. Abundance of two key vectors of several arboviruses, including WNV, Culex tarsalis and the Culex pipiens complex, increased 17-21-fold with irrigation. Irrigation reduced seasonal variability in C. tarsalis abundance by 36.1%. Human WNV incidence increased with irrigation, which explained more than a third (34.2%) of the variation in WNV incidence among California counties. These results suggest that irrigation can increase and decouple mosquito populations from natural precipitation variability, resulting in sustained and increased disease burdens. Shifts in precipitation due to climate change are likely to result in increased irrigation in many arid regions which could increase mosquito populations and disease.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Associations between two mosquito populations and West Nile virus in Harris County, Texas, 2003-06 [J].
Dennett, James A. ;
Bala, Adilelkhidir ;
Wuithiranyagool, Taweesak ;
Randle, Yvonne ;
Sargent, Christopher B. ;
Guzman, Hilda ;
Surin, Marina ;
Hassan, K. Hassan ;
Reyna-Nava, Martin ;
Unnasch, Thomas R. ;
Tesh, Robert B. ;
Parsons, Ray E. ;
Bueno, Rudy, Jr. .
JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION, 2007, 23 (03) :264-275
[22]   Ecological niche modeling of potential West Nile virus vector mosquito species in Iowa [J].
Larson, Scott R. ;
DeGroote, John P. ;
Bartholomay, Lyric C. ;
Sugumaran, Ramanathan .
JOURNAL OF INSECT SCIENCE, 2010, 10
[23]   The Alligator and the Mosquito: North American Crocodilians as Amplifiers of West Nile Virus in Changing Climates [J].
Andersen, Desiree Kirsten ;
Fischer, Gracie Ann ;
Combrink, Leigh .
MICROORGANISMS, 2024, 12 (09)
[24]   Ecological correlates of risk and incidence of West Nile virus in the United States [J].
Allan, Brian F. ;
Langerhans, R. Brian ;
Ryberg, Wade A. ;
Landesman, William J. ;
Griffin, Nicholas W. ;
Katz, Rachael S. ;
Oberle, Brad J. ;
Schutzenhofer, Michele R. ;
Smyth, Kristina N. ;
de St. Maurice, Annabelle ;
Clark, Larry ;
Crooks, Kevin R. ;
Hernandez, Daniel E. ;
McLean, Robert G. ;
Ostfeld, Richard S. ;
Chase, Jonathan M. .
OECOLOGIA, 2009, 158 (04) :699-708
[25]   Broadscale spatial synchrony in a West Nile virus mosquito vector across multiple timescales [J].
Campbell, Lindsay P. ;
Bauer, Amely M. ;
Tavares, Yasmin ;
Guralnick, Robert P. ;
Reuman, Daniel .
SCIENTIFIC REPORTS, 2024, 14 (01)
[26]   Mosquito blood-feeding patterns and nesting behavior of American crows, an amplifying host of West Nile virus [J].
Wheeler, Sarah S. ;
Taff, Conor C. ;
Reisen, William K. ;
Townsend, Andrea K. .
PARASITES & VECTORS, 2021, 14 (01)
[27]   Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice [J].
Styer, Linda M. ;
Lim, Pei-Yin ;
Louie, Karen L. ;
Albright, Rebecca G. ;
Kramer, Laura D. ;
Bernard, Kristen A. .
JOURNAL OF VIROLOGY, 2011, 85 (04) :1517-1527
[28]   Transmission Dynamics of the West Nile Virus in Mosquito Vector Populations under the Influence of Weather Factors in the Danube Delta, Romania [J].
Ani Ioana Cotar ;
Elena Falcuta ;
Liviu Florian Prioteasa ;
Sorin Dinu ;
Cornelia Svetlana Ceianu ;
Shlomit Paz .
EcoHealth, 2016, 13 :796-807
[29]   Mosquito-borne West Nile virus (WNV) surveillance in the Upper Rhine Valley, Germany [J].
Timmermann, Ute ;
Becker, Norbert .
JOURNAL OF VECTOR ECOLOGY, 2010, 35 (01) :140-143
[30]   Determinants of the current and future distribution of the West Nile virus mosquito vector Culex pipiens in Spain [J].
Gangoso, L. ;
Aragones, D. ;
Martinez-de la Puente, J. ;
Lucientes, J. ;
Delacour-Estrella, S. ;
Estrada Pena, R. ;
Montalvo, T. ;
Bueno-Mari, R. ;
Bravo-Barriga, D. ;
Frontera, E. ;
Marques, E. ;
Ruiz-Arrondo, I ;
Munoz, A. ;
Oteo, J. A. ;
Miranda, M. A. ;
Barcelo, C. ;
Arias Vazquez, M. S. ;
Silva-Torres, M., I ;
Ferraguti, M. ;
Magallanes, S. ;
Muriel, J. ;
Marzal, A. ;
Aranda, C. ;
Ruiz, S. ;
Gonzalez, M. A. ;
Morchon, R. ;
Gomez-Barroso, D. ;
Figuerola, J. .
ENVIRONMENTAL RESEARCH, 2020, 188