Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes

被引:0
作者
Boddula R. [1 ]
Xie G. [1 ,2 ]
Guo B. [1 ,2 ]
Gong J.R. [1 ,2 ]
机构
[1] Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing
[2] University of Chinese Academy of Sciences, Beijing
来源
Chinese Journal of Catalysis | 2021年 / 42卷 / 08期
基金
中国国家自然科学基金;
关键词
Artificial photosynthesis; Interfacial engineering; Oxygen evolution reaction; Photoanode; Solar water splitting; Transition-metal electrocatalyst;
D O I
10.1016/S1872-2067(20)63647-6
中图分类号
学科分类号
摘要
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical (PEC) water splitting is central to improving its performance. Herein, taking the Si-based photoanodes (n+p-Si/SiOx/Fe/FeOx/MOOH, M = Fe, Co, Ni) as a model system, we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction (OER). Among the photoanodes with the three different electrocatalysts, the best OER activity, with a low-onset potential of ∼1.01 VRHE, a high photocurrent density of 24.10 mA cm−2 at 1.23 VRHE, and a remarkable saturation photocurrent density of 38.82 mA cm−2, was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight (100 mW cm−2) in 1 M KOH electrolyte. The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport, provides a larger number of surface active sites, and results in higher OER activity, compared to other electrocatalysts. This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion. © 2021 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences
引用
收藏
页码:1387 / 1394
页数:7
相关论文
共 50 条
  • [1] Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi Q., Santori E.A., Lewis N.S., Chem. Rev., 110, pp. 6446-6473, (2010)
  • [2] Chen Z., Huang Q., Huang B., Zhang F., Li C., Chin. J. Catal., 40, pp. 38-42, (2019)
  • [3] Kuang P., Zhu B., Li Y., Liu H., Yu J., Fan K., Nanoscale Horiz., 3, pp. 317-326, (2018)
  • [4] Li P., Chen W., Chin. J. Catal., 40, pp. 4-22, (2019)
  • [5] Kuang P., He M., Zou H., Yu J., Fan K., Appl. Catal. B, 254, pp. 15-25, (2019)
  • [6] Li X., Yu J., Jaroniec M., Chen X., Chem. Rev., 119, pp. 3962-4179, (2019)
  • [7] Shen R., Xie J., Xiang Q., Chen X., Jiang J., Li X., Chin. J. Catal., 40, pp. 240-288, (2019)
  • [8] Zhang W., Zhang H., Xu J., Zhuang H., Long J., Chin. J. Catal., 40, pp. 320-325, (2019)
  • [9] He K., Xie J., Luo X., Wen J., Ma S., Li X., Fang Y., Zhang X., Chin. J. Catal., 38, pp. 240-252, (2017)
  • [10] Hu S., Shaner M.R., Beardslee J.A., Lichterman M., Brunschwig B.S., Lewis N.S., Science, 344, pp. 1005-1009, (2014)