Design and Implementation of the Illinois Express Quantum Metropolitan Area Network

被引:26
作者
Chung, Joaquin [1 ,2 ]
Eastman, Ely M. [4 ]
Kanter, Gregory S. [3 ,4 ]
Kapoor, Keshav [7 ]
Lauk, Nikolai [5 ,6 ]
Pena, Cristian H. [7 ]
Plunkett, Robert K. [7 ]
Sinclair, Neil [5 ,6 ,8 ]
Thomas, Jordan M. [4 ]
Valivarthi, Raju [5 ,6 ]
Xie, Si [5 ,6 ,7 ]
Kettimuthu, Rajkumar [1 ,2 ,9 ]
Kumar, Prem [4 ,10 ]
Spentzouris, Panagiotis [7 ]
Spiropulu, Maria [5 ,6 ]
机构
[1] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[2] Univ Chicago, Consortium Adv Sci & Engn, Chicago, IL 60637 USA
[3] NuCrypt LLC, Park Ridge, IL 60068 USA
[4] Northwestern Univ, Ctr Photon Commun & Comp, McCormick Sch ofEngineering & Appl Sci, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[5] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[6] CALTECH, Alliance Quantum Technol, Pasadena, CA 91125 USA
[7] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[8] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[9] Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
[10] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2022年 / 3卷
关键词
Metropolitan area; Q-LAN; Q-MAN; quantum networks; KEY DISTRIBUTION; COMMUNICATION; FIBER;
D O I
10.1109/TQE.2022.3221029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Illinois Express Quantum Network (IEQNET) is a program to realize metropolitan-scale quantum networking over deployed optical fiber using currently available technology. IEQNET consists of multiple sites that are geographically dispersed in the Chicago metropolitan area. Each site has one or more quantum nodes (Q-Nodes) representing the communication parties in a quantum network. Q-Nodes generate or measure quantum signals such as entangled photons and communicate the measurement results via standard classical signals and conventional networking processes. The entangled photons in IEQNET nodes are generated at multiple wavelengths and are selectively distributed to the desired users via transparent optical switches. Here, we describe the network architecture of IEQNET, including the Internet-inspired layered hierarchy that leverages software-defined networking (SDN) technology to perform traditional wavelength routing and assignment between the Q-Nodes. Specifically, SDN decouples the control and data planes, with the control plane being entirely implemented in the classical domain. We also discuss the IEQNET processes that address issues associated with synchronization, calibration, network monitoring, and scheduling. An important goal of IEQNET is to demonstrate the extent to which the control plane classical signals can copropagate with the data plane quantum signals in the same fiber lines (quantum-classical signal "coexistence"). This goal is furthered by the use of tunable narrowband optical filtering at the receivers and, at least in some cases, a wide wavelength separation between the quantum and classical channels. We envision IEQNET to aid in developing robust and practical quantum networks by demonstrating metropolitan-scale quantum communication tasks such as entanglement distribution and quantum-state teleportation.
引用
收藏
页数:20
相关论文
共 49 条
[1]  
Alam M. S., 2022, Rep. FERMILAB-PUB-22-260-SQMS
[2]   Perspectives and limitations of QKD integration in metropolitan area networks [J].
Aleksic, Slavisa ;
Hipp, Florian ;
Winkler, Dominic ;
Poppe, Andreas ;
Schrenk, Bernhard ;
Franzl, Gerald .
OPTICS EXPRESS, 2015, 23 (08) :10359-10373
[3]   Reconfigurable Quantum Local Area Network Over Deployed Fiber [J].
Alshowkan, Muneer ;
Williams, Brian P. ;
Evans, Philip G. ;
Rao, Nageswara S., V ;
Simmerman, Emma M. ;
Lu, Hsuan-Hao ;
Lingaraju, Navin B. ;
Weiner, Andrew M. ;
Marvinney, Claire E. ;
Pai, Yun-Yi ;
Lawrie, Benjamin J. ;
Peters, Nicholas A. ;
Lukens, Joseph M. .
PRX QUANTUM, 2021, 2 (04)
[4]  
[Anonymous], 2000, Opt. Netw. Mag
[5]   Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide [J].
Arahira, Shin ;
Namekata, Naoto ;
Kishimoto, Tadashi ;
Yaegashi, Hiroki ;
Inoue, Shuichiro .
OPTICS EXPRESS, 2011, 19 (17) :16032-16043
[6]  
Awschalom D., 2020, Tech. Rep., DOI 10.2172/1638794
[7]  
Berde P., 2014, P 3 WORKSH HOT TOP S
[8]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[9]   Optical networking for quantum key distribution and quantum communications [J].
Chapuran, T. E. ;
Toliver, P. ;
Peters, N. A. ;
Jackel, J. ;
Goodman, M. S. ;
Runser, R. J. ;
McNown, S. R. ;
Dallmann, N. ;
Hughes, R. J. ;
McCabe, K. P. ;
Nordholt, J. E. ;
Peterson, C. G. ;
Tyagi, K. T. ;
Mercer, L. ;
Dardy, H. .
NEW JOURNAL OF PHYSICS, 2009, 11
[10]   Advancing Software-Defined Networks: A Survey [J].
Cox, Jacob, Jr. ;
Chuang, Joaquin ;
Donvan, Sean ;
Ivey, Jared ;
Clarx, Russel J. ;
Riley, George ;
Owen, Henry L., III .
IEEE ACCESS, 2017, 5 :25487-25526