Plasma Biomarkers as Predictors of Progression to Dementia in Individuals with Mild Cognitive Impairment

被引:2
|
作者
Nallapu, Bhargav T. [1 ,4 ]
Petersen, Kellen K. [1 ]
Lipton, Richard B. [1 ]
Davatzikos, Christos [2 ]
Ezzati, Ali [1 ,3 ]
机构
[1] Albert Einstein Coll Med, Saul B Korey Dept Neurol, New York, NY USA
[2] Univ Penn, Perelman Sch Med, Radiol Dept, Philadelphia, PA USA
[3] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[4] Albert Einstein Coll Med, Dept Neurol, Etten 3C12,1300 Morris Pk Ave, Bronx, NY 10461 USA
关键词
Alzheimer's disease; dementia; disease progression; feature engineering; plasma biomarkers; predictive models; PITTSBURGH COMPOUND B; ALZHEIMERS-DISEASE; AMYLOID PET; MRI; CLASSIFICATION; FLORBETAPIR; RELIABILITY; PERFORMANCE; CSF;
D O I
10.3233/JAD-230620
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Blood-based biomarkers (BBMs) are of growing interest in the field of Alzheimer's disease (AD) and related dementias. Objective: This study aimed to assess the ability of plasma biomarkers to 1) predict disease progression from mild cognitive impairment (MCI) to dementia and 2) improve the predictive ability of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) measures when combined. Methods: We used data from the Alzheimer's Disease Neuroimaging Initiative. Machine learning models were trained using the data from participants who remained cognitively stable (CN-s) and with Dementia diagnosis at 2-year follow-up visit. The models were used to predict progression to dementia in MCI individuals. We assessed the performance of models with plasma biomarkers against those with CSF and MRI measures, and also in combination with them. Results: Our models with plasma biomarkers classified CN-s individuals from AD with an AUC of 0.75 +/- 0.03 and could predict conversion to dementia in MCI individuals with an AUC of 0.64 +/- 0.03 (17.1% BP, base prevalence). Models with plasma biomarkers performed better when combined with CSF and MRI measures (CN versus AD: AUC of 0.89 +/- 0.02; MCI-to-AD: AUC of 0.76 +/- 0.03, 21.5% BP). Conclusions: Our results highlight the potential of plasma biomarkers in predicting conversion to dementia in MCI individuals. While plasma biomarkers could improve the predictive ability of CSF and MRI measures when combined, they also show the potential to predict non-progression to AD when considered alone. The predictive ability of plasma biomarkers is crucially linked to reducing the costly and effortful collection of CSF and MRI measures.
引用
收藏
页码:231 / 246
页数:16
相关论文
共 50 条
  • [21] Using artificial neural networks to select the parameters for the prognostic of mild cognitive impairment and dementia in elderly individuals
    Lins, A. J. C. C.
    Muniz, M. T. C.
    Garcia, A. N. M.
    Gomes, A. V.
    Cabral, R. M.
    Bastos-Filho, C. J. A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 93 - 104
  • [22] Cognitive Reserve and Mild Cognitive Impairment Predictors and Rates of Reversion to Intact Cognition vs Progression to Dementia
    Iraniparast, Maryam
    Shi, Yidan
    Wu, Ying
    Zeng, Leilei
    Maxwell, Colleen J.
    Kryscio, Richard J.
    St John, Philip D.
    SantaCruz, Karen S.
    Tyas, Suzanne L.
    NEUROLOGY, 2022, 98 (11) : E1114 - E1123
  • [23] CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment
    Bouwman, F. H. f
    Schoonenboom, S. N. M.
    van der Flier, W. M.
    van Elk, E. J.
    Kok, A.
    Barkhof, F.
    Blankenstein, M. A.
    Scheltens, Ph
    NEUROBIOLOGY OF AGING, 2007, 28 (07) : 1070 - 1074
  • [24] Mild cognitive impairment (part 1): clinical characteristics and predictors of dementia
    Forlenza, Orestes V.
    Diniz, Breno S.
    Stella, Florindo
    Teixeira, Antonio L.
    Gattaz, Wagner F.
    REVISTA BRASILEIRA DE PSIQUIATRIA, 2013, 35 (02) : 178 - 185
  • [25] Metabolic and Environmental Biomarkers in Mild Cognitive Impairment and Dementia: An Exploratory Study
    Lyon, Abigail C.
    Lippa, Carol F.
    Eiser, Arnold R.
    JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE, 2024, 30 (08): : 793 - 801
  • [26] Neuropsychiatric symptoms in mild cognitive impairment: differences by subtype and progression to dementia
    Edwards, Emily R.
    Spira, Adam P.
    Barnes, Deborah E.
    Yaffe, Kristine
    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2009, 24 (07) : 716 - 722
  • [27] Body Mass Index Predicts Progression of Mild Cognitive Impairment to Dementia
    Cova, Ilaria
    Clerici, Francesca
    Maggiore, Laura
    Pomati, Simone
    Cucumo, Valentina
    Ghiretti, Roberta
    Galimberti, Daniela
    Scarpini, Elio
    Mariani, Claudio
    Caracciolo, Barbara
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2016, 41 (3-4) : 172 - 180
  • [28] Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease
    Desikan, Rahul S.
    Cabral, Howard J.
    Hess, Christopher P.
    Dillon, William P.
    Glastonbury, Christine M.
    Weiner, Michael W.
    Schmansky, Nicholas J.
    Greve, Douglas N.
    Salat, David H.
    Buckner, Randy L.
    Fischl, Bruce
    BRAIN, 2009, 132 : 2048 - 2057
  • [29] Expert elicitation of risk factors for progression to dementia in individuals with mild cognitive impairment
    Wang, Meng
    Sajobi, Tolulope T.
    Hogan, David B.
    Ganesh, Aravind
    Seitz, Dallas P.
    Chekouo, Thierry
    Forkert, Nils D.
    Borrie, Michael J.
    Camicioli, Richard
    Hsiung, Ging-Yuek Robin
    Masellis, Mario
    Moorhouse, Paige
    Tartaglia, Maria Carmela
    Ismail, Zahinoor
    Smith, Eric E.
    ALZHEIMERS & DEMENTIA, 2023, 19 (10) : 4542 - 4548
  • [30] Peripheral Antioxidant Markers in Mild Cognitive Impairment and its Progression to Dementia
    Panza, Francesco
    Solfrizzi, Vincenzo
    Seripa, Davide
    Imbimbo, Bruno P.
    Pilotto, Alberto
    Frisardi, Vincenza
    JOURNAL OF ALZHEIMERS DISEASE, 2010, 21 (04) : 1179 - 1183