Plasma Biomarkers as Predictors of Progression to Dementia in Individuals with Mild Cognitive Impairment

被引:2
|
作者
Nallapu, Bhargav T. [1 ,4 ]
Petersen, Kellen K. [1 ]
Lipton, Richard B. [1 ]
Davatzikos, Christos [2 ]
Ezzati, Ali [1 ,3 ]
机构
[1] Albert Einstein Coll Med, Saul B Korey Dept Neurol, New York, NY USA
[2] Univ Penn, Perelman Sch Med, Radiol Dept, Philadelphia, PA USA
[3] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[4] Albert Einstein Coll Med, Dept Neurol, Etten 3C12,1300 Morris Pk Ave, Bronx, NY 10461 USA
关键词
Alzheimer's disease; dementia; disease progression; feature engineering; plasma biomarkers; predictive models; PITTSBURGH COMPOUND B; ALZHEIMERS-DISEASE; AMYLOID PET; MRI; CLASSIFICATION; FLORBETAPIR; RELIABILITY; PERFORMANCE; CSF;
D O I
10.3233/JAD-230620
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Blood-based biomarkers (BBMs) are of growing interest in the field of Alzheimer's disease (AD) and related dementias. Objective: This study aimed to assess the ability of plasma biomarkers to 1) predict disease progression from mild cognitive impairment (MCI) to dementia and 2) improve the predictive ability of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) measures when combined. Methods: We used data from the Alzheimer's Disease Neuroimaging Initiative. Machine learning models were trained using the data from participants who remained cognitively stable (CN-s) and with Dementia diagnosis at 2-year follow-up visit. The models were used to predict progression to dementia in MCI individuals. We assessed the performance of models with plasma biomarkers against those with CSF and MRI measures, and also in combination with them. Results: Our models with plasma biomarkers classified CN-s individuals from AD with an AUC of 0.75 +/- 0.03 and could predict conversion to dementia in MCI individuals with an AUC of 0.64 +/- 0.03 (17.1% BP, base prevalence). Models with plasma biomarkers performed better when combined with CSF and MRI measures (CN versus AD: AUC of 0.89 +/- 0.02; MCI-to-AD: AUC of 0.76 +/- 0.03, 21.5% BP). Conclusions: Our results highlight the potential of plasma biomarkers in predicting conversion to dementia in MCI individuals. While plasma biomarkers could improve the predictive ability of CSF and MRI measures when combined, they also show the potential to predict non-progression to AD when considered alone. The predictive ability of plasma biomarkers is crucially linked to reducing the costly and effortful collection of CSF and MRI measures.
引用
收藏
页码:231 / 246
页数:16
相关论文
共 50 条
  • [1] Use of Genetic Variation as Biomarkers for Mild Cognitive Impairment and Progression of Mild Cognitive Impairment to Dementia
    Reitz, Christiane
    Mayeux, Richard
    JOURNAL OF ALZHEIMERS DISEASE, 2010, 19 (01) : 229 - 251
  • [2] Predicting progression to dementia in persons with mild cognitive impairment using cerebrospinal fluid markers
    Handels, Ron L. H.
    Vos, Stephanie J. B.
    Kramberger, Milica G.
    Jelic, Vesna
    Blennow, Kaj
    van Buchem, Mark
    van der Flier, Wiesje
    Freund-Levi, Yvonne
    Hampel, Harald
    Rikkert, Marcel Olde
    Oleksik, Ania
    Pirtosek, Zvezdan
    Scheltens, Philip
    Soininen, Hilkka
    Teunissen, Charlotte
    Tsolaki, Magda
    Wallin, Asa K.
    Winblad, Bengt
    Verhey, Frans R. J.
    Visser, Pieter Jelle
    ALZHEIMERS & DEMENTIA, 2017, 13 (08) : 903 - 912
  • [3] Plasma biomarkers for diagnosis of Alzheimer's disease and prediction of cognitive decline in individuals with mild cognitive impairment
    Kivisakk, Pia
    Carlyle, Becky C.
    Sweeney, Thadryan
    Trombetta, Bianca A.
    LaCasse, Kathryn
    El-Mufti, Leena
    Tuncali, Idil
    Chibnik, Lori B.
    Das, Sudeshna
    Scherzer, Clemens R.
    Johnson, Keith A.
    Dickerson, Bradford C.
    Gomez-Isla, Teresa
    Blacker, Deborah
    Oakley, Derek H.
    Frosch, Matthew P.
    Hyman, Bradley T.
    Aghvanyan, Anahit
    Bathala, Pradeepthi
    Campbell, Christopher
    Sigal, George
    Stengelin, Martin
    Arnold, Steven E.
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [4] Predictors of Progression from Mild Cognitive Impairment to Dementia in the Placebo-Arm of a Clinical Trial Population
    Prins, Niels D.
    van der Flier, Wiesje M.
    Brashear, H. Robert
    Knol, Dirk L.
    van de Pol, Laura A.
    Barkhof, Frederik
    Scheltens, Philip
    JOURNAL OF ALZHEIMERS DISEASE, 2013, 36 (01) : 79 - 85
  • [5] Plasma biomarkers for prognosis of cognitive decline in patients with mild cognitive impairment
    Kivisakk, Pia
    Magdamo, Colin
    Trombetta, Bianca A.
    Noori, Ayush
    Kuo, Yi-kai E.
    Chibnik, Lori B.
    Carlyle, Becky C.
    Serrano-Pozo, Alberto
    Scherzer, Clemens R.
    Hyman, Bradley T.
    Das, Sudeshna
    Arnold, Steven E.
    BRAIN COMMUNICATIONS, 2022, 4 (04)
  • [6] Predicting Progression to Dementia in Elderly Subjects with Mild Cognitive Impairment Using Both Cognitive and Neuroimaging Predictors
    Peters, Frederic
    Villeneuve, Sylvia
    Belleville, Sylvie
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 38 (02) : 307 - 318
  • [7] Neuropsychiatric symptoms and faster progression of cognitive impairments as predictors of risk of conversion of mild cognitive impairment to dementia
    Bidzan, Mariola
    Bidzan, Leszek
    Bidzan-Bluma, Ilona
    ARCHIVES OF MEDICAL SCIENCE, 2017, 13 (05) : 1168 - 1177
  • [8] Risk Factors for the Progression of Mild Cognitive Impairment to Dementia
    Campbell, Noll L.
    Unverzagt, Fred
    LaMantia, Michael A.
    Khan, Babar A.
    Boustani, Malaz A.
    CLINICS IN GERIATRIC MEDICINE, 2013, 29 (04) : 873 - +
  • [9] The relationship of plasma Aβ levels to dementia in aging individuals with mild cognitive impairment
    Ma Fei
    Wang Jianghua
    Miao Rujuan
    Zhao Wei
    Wang Qian
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2011, 305 (1-2) : 92 - 96
  • [10] Plasma Urate and Progression of Mild Cognitive Impairment
    Irizarry, Michael C.
    Raman, Rema
    Schwarzschild, Michael A.
    Becerra, Lida M.
    Thomas, Ronald G.
    Peterson, Ronald C.
    Ascherio, Alberto
    Aisen, Paul S.
    NEURODEGENERATIVE DISEASES, 2009, 6 (1-2) : 23 - 28