Upper-branch thermal Hall effect in quantum paramagnets

被引:0
作者
Ma, Bowen [1 ,2 ,3 ,4 ]
Wang, Z. D. [2 ,3 ]
Chen, Gang, V [1 ,4 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Peoples R China
[3] Univ Hong Kong, HK Inst Quantum Sci & Technol, Pokfulam Rd, Hong Kong, Peoples R China
[4] Univ Hong Kong, Shenzhen Inst Res & Innovat, Shenzhen 518057, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
基金
美国国家科学基金会;
关键词
PYROCHLORE; CONDUCTIVITY; EXCITATIONS; SYSTEMS; PHASE;
D O I
10.1103/PhysRevResearch.6.023044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by the persistent thermal Hall effects at finite temperatures in various quantum paramagnets, we explore the origin of the thermal Hall effects from the perspective of the upper branch parts by invoking dispersive and twisted crystal field excitations. It is shown that the upper branches of the local energy levels could hybridize and form dispersive bands. The observation is that, upon time-reversal symmetry breaking by the magnetic fields, these upper branch bands could acquire a Berry curvature distribution and contribute to the thermal Hall effect even in the paramagnetic regime. As a proof of principle, we consider the setting on kagom & eacute; lattice with one ground-state singlet and an excited doublet, and show this is indeed possible. We expect this effect to be universal and that it has no strong connection with the underlying lattice. Although the thermal Hall signal can be contributed from other sources such as phonons and their scattering in the actual materials, we discuss the application to the relevant quantum materials.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Nontrivial Triplon Topology and Triplon Liquid in Kitaev-Heisenberg-type Excitonic Magnets [J].
Anisimov, Pavel S. ;
Aust, Friedemann ;
Khaliullin, Giniyat ;
Daghofer, Maria .
PHYSICAL REVIEW LETTERS, 2019, 122 (17)
[2]   SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms [J].
Barnett, Ryan ;
Boyd, G. R. ;
Galitski, Victor .
PHYSICAL REVIEW LETTERS, 2012, 109 (23)
[3]  
Bernevig B A., 2013, Topological insulators and topological superconductors
[4]   Thermal Hall conductivity in the cuprate Mott insulators Nd2CuO4 and Sr2CuO2Cl2 [J].
Boulanger, Marie-Eve ;
Grissonnanche, Gael ;
Badoux, Sven ;
Allaire, Andreanne ;
Lefrancois, Etienne ;
Legros, Anaelle ;
Gourgout, Adrien ;
Dion, Maxime ;
Wang, C. H. ;
Chen, X. H. ;
Liang, R. ;
Hardy, W. N. ;
Bonn, D. A. ;
Taillefer, Louis .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Multiflavor Mott insulators in quantum materials and ultracold atoms [J].
Chen, Gang V. ;
Wu, Congjun .
NPJ QUANTUM MATERIALS, 2024, 9 (01)
[6]   Large phonon thermal Hall conductivity in the antiferromagnetic insulator Cu3TeO6 [J].
Chen, Lu ;
Boulanger, Marie-Eve ;
Wang, Zhi-Cheng ;
Tafti, Fazel ;
Taillefer, Louis .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (34)
[7]   Spin Nernst Effect of Magnons in Collinear Antiferromagnets [J].
Cheng, Ran ;
Okamoto, Satoshi ;
Xiao, Di .
PHYSICAL REVIEW LETTERS, 2016, 117 (21)
[8]  
Chu WJ, 2023, Arxiv, DOI arXiv:2302.13300
[9]   Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores [J].
Del Maestro, AG ;
Gingras, MJP .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (20) :3339-3353
[10]   Magnetic Ground States of the Rare-Earth Tripod Kagome Lattice Mg2RE3Sb3O14 (RE = Gd,Dy,Er) [J].
Dun, Z. L. ;
Trinh, J. ;
Li, K. ;
Lee, M. ;
Chen, K. W. ;
Baumbach, R. ;
Hu, Y. F. ;
Wang, Y. X. ;
Choi, E. S. ;
Shastry, B. S. ;
Ramirez, A. P. ;
Zhou, H. D. .
PHYSICAL REVIEW LETTERS, 2016, 116 (15)