Local linear estimation for the censored functional regression

被引:0
作者
Almulhim, Fatimah A. [1 ]
Merouan, Torkia [2 ]
Alamari, Mohammed B. [3 ]
Mechab, Boubaker [2 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Stat & Stochast Proc, BP 89, Sidi Bel Abbes 22000, Algeria
[3] King Khalid Univ, Coll Sci, Dept Math, Abha 62529, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
regression function; functional data; asymptotic normality; local linear estimation; Kaplan-Meier estimator; ASYMPTOTIC NORMALITY; NONPARAMETRIC REGRESSION; CONDITIONAL QUANTILE; MODELED REGRESSION; KERNEL ESTIMATOR; PREDICTION; DENSITY;
D O I
10.3934/math.2024679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the Local Linear Estimation (LLE) of the conditional functional mean. This regression model is used when the independent variable is functional , and the dependent one is a censored scalar variable. Under standard postulates, we establish the asymptotic distribution of the LLE by proving its asymptotic normality. The obtained results show the superiority of the LLE approach over the functional local constant one. The feasibility of the studied model is demonstrated using artificial data. Finally, the usefulness of the obtained asymptotic distribution in incomplete functional data is highlighted through a real data application.
引用
收藏
页码:13980 / 13997
页数:18
相关论文
共 28 条
[1]   The strong consistency and asymptotic normality of the kernel estimator type in functional single index model in presence of censored data [J].
Attaoui, Said ;
Bentata, Billal ;
Bouzebda, Salim ;
Laksaci, Ali .
AIMS MATHEMATICS, 2024, 9 (03) :7340-7371
[2]   Local linear regression for functional predictor and scalar response [J].
Baillo, Amparo ;
Grane, Aurea .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :102-111
[3]   Locally modelled regression and functional data [J].
Barrientos-Marin, J. ;
Ferraty, F. ;
Vieu, P. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (05) :617-632
[4]   Local linear approach: Conditional density estimate for functional and censored data [J].
Benkhaled, Abdelkader ;
Madani, Fethi .
DEMONSTRATIO MATHEMATICA, 2022, 55 (01) :315-327
[5]   ASYMPTOTIC NORMALITY OF THE LOCAL LINEAR ESTIMATION OF THE CONDITIONAL DENSITY FOR FUNCTIONAL DEPENDENT AND CENSORED DATA [J].
Benkhaled, Abdelkader ;
Madani, Fethi ;
Khardani, Salah .
SOUTH AFRICAN STATISTICAL JOURNAL, 2020, 54 (02) :131-151
[6]  
Beran RJ., 1981, NONPARAMETRIC REGRES
[7]   Local linear regression for functional data [J].
Berlinet, A. ;
Elamine, A. ;
Mas, A. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) :1047-1075
[8]   A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator [J].
Bitouzé, D ;
Laurent, B ;
Massart, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (06) :735-763
[9]  
Bouhadjera F, 2020, arXiv, DOI [10.48550/arXiv.2004.02466, DOI 10.48550/ARXIV.2004.02466]
[10]   Asymptotic normality of the relative error regression function estimator for censored and time series data [J].
Bouhadjera, Feriel ;
Said, Elias Ould .
DEPENDENCE MODELING, 2021, 9 (01) :156-178