Piercing families of convex sets in the plane that avoid a certain subfamily with lines

被引:0
作者
McGinnis, Daniel
机构
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2024年 / 120卷
关键词
Gallai-type theorems; Geometric transversal theory; KKM theorem;
D O I
10.1016/j.comgeo.2024.102087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a C(k) to be a family of k sets F-1, ... , F-k such that conv(F-i boolean OR Fi+1) boolean AND conv(F-j boolean OR Fj+1) = circle divide when {i, i + 1} boolean AND {j, j + 1} = circle divide (indices are taken modulo k). We show that if F is a family of compact, convex sets that does not contain a C(k), then there are k - 2 lines that pierce F. Additionally, we give an example of a family of compact, convex sets that contains no C(k) and cannot be pierced by [k/2] - 1 lines. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 10 条
[1]   A GALLAI-TYPE TRANSVERSAL PROBLEM IN THE PLANE [J].
ECKHOFF, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (02) :203-214
[2]   RADON THEOREM IN CONVEX PRODUCT STRUCTURES .2. [J].
ECKHOFF, J .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (01) :7-&
[3]   TRANSVERSAL PROBLEMS IN PLANE [J].
ECKHOFF, J .
ARCHIV DER MATHEMATIK, 1973, 24 (02) :195-202
[4]  
Holmsen AF, 2013, BOLYAI SOC MATH STUD, V24, P187
[5]  
Kramer Dietrich, 1974, Dissertation
[6]  
LASSONDE M, 1990, CR ACAD SCI I-MATH, V310, P573
[7]  
Mazurkiewicz S., 1929, Fund. Math., V14, P132
[8]   LINE TRANSVERSALS IN FAMILIES OF CONNECTED SETS IN THE PLANE [J].
Mcginnis, Daniel ;
Zerbib, Shira .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) :2916-2919
[9]   A Family of Convex Sets in the Plane Satisfying the (4,3)-Property can be Pierced by Nine Points [J].
McGinnis, Daniel .
DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) :860-880
[10]  
Santalo L., 1940, PUBL I MAT U NAC LIT, V2, P49