Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution

被引:6
|
作者
Djahnine, Aissam [1 ,2 ]
Lazarus, Carole [1 ]
Lederlin, Mathieu [3 ]
Mule, Sebastien [4 ,5 ]
Wiemker, Rafael [1 ]
Si-Mohamed, Salim [6 ]
Jupin-Delevaux, Emilien [6 ]
Nempont, Olivier [1 ]
Skandarani, Youssef [1 ]
De Craene, Mathieu [1 ]
Goubalan, Segbedji [1 ]
Raynaud, Caroline [1 ]
Belkouchi, Younes [7 ,8 ]
Ben Afia, Amira [8 ]
Fabre, Clement [10 ]
Ferretti, Gilbert [11 ]
De Margerie, Constance [12 ,13 ]
Berge, Pierre [14 ]
Liberge, Renan [15 ]
Elbaz, Nicolas [16 ]
Blain, Maxime [17 ]
Brillet, Pierre -Yves [18 ]
Chassagnon, Guillaume [12 ,19 ]
Cadour, Farah [20 ]
Caramella, Caroline [21 ]
El Hajjam, Mostafa [22 ]
Boussouar, Samia [23 ]
Hadchiti, Joya [24 ]
Fablet, Xavier [3 ]
Khalil, Antoine [9 ]
Talbot, Hugues [8 ]
Luciani, Alain [4 ,5 ]
Lassau, Nathalie [24 ]
Boussel, Loic [2 ,6 ]
机构
[1] Philips Res France, F-92150 Suresnes, France
[2] Univ Claude Bernard Lyon 1, CREATIS, INSA Lyon, UJM St Etienne,NRS,Inserm,CREATIS UMR 5220,U1294, Lyon, France
[3] CHU Rennes, Dept Radiol, F-35000 Rennes, France
[4] Henri Mondor Univ Hosp, Med Imaging Dept, AP HP, Creteil, France
[5] Inserm, Team 18, U955, F-94000 Creteil, France
[6] Hosp Civils Lyon, Dept Radiol, F-69500 Lyon, France
[7] Univ Paris Saclay, BIOMAPS, CNRS,CEA,UMR 1281, Inserm,Lab Imagerie Biomed Multimodale Paris Sacl, F-94800 Villejuif, France
[8] Univ Paris Saclay, CVN Ctr vis Numer, OPTS Optimisat Imagerie & Sante, Inria,CentraleSupelec, F-91190 Gif Sur Yvette, France
[9] Hop Bichat Claude Bernard, Dept Radiol, APHP Nord, F-75018 Paris, France
[10] Ctr Hosp Laval, Dept Radiol, F-53000 Laval, France
[11] Univ Grenobles Alpes, Serv Radiol & Imagerie Med, F-38000 Grenoble, France
[12] Univ Paris Cite, F-75006 Paris, France
[13] Hop St Louis, AP HP, Dept Radiol, F-75010 Paris, France
[14] CHU Angers, Dept Radiol, Angers, France
[15] CHU Nantes, Dept Radiol, F-44000 Nantes, France
[16] Hop Europeen Georges Pompidou, Dept Radiol, AP HP, F-75015 Paris, France
[17] Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[18] Paris 13 Univ, Hop Avicenne, Dept Radiol, F-93000 Bobigny, France
[19] Hop Cochin, Dept Radiol, APHP, F-75014 Paris, France
[20] Hop Univ Timone, APHM, CEMEREM, F-13005 Marseille, France
[21] Grp Hosp Paris St Joseph, Dept Radiol, F-75015 Paris, France
[22] Hop Ambroise Pare Hosp, Dept Radiol, Team 3, UVSQ,UMR 1179,INSERM, Boulogne Billancourt, France
[23] Sorbonne Univ, Hop La Pitie Salpetriere, Unite Imagerie Cardiovasc & Thorac ICT, UMRS 1166, F-75013 Paris, France
[24] Univ Paris Saclay, Inst Gustave Roussy, Dept Imaging, F-94800 Villejuif, France
关键词
Artificial intelligence; Pulmonary embolism; Qanadli score; Retina U-net; R-CNN; INTELLIGENCE;
D O I
10.1016/j.diii.2023.09.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations. Materials and methods: Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (i), detecting blood clots; (ii), performing PE-positive versus negative classification; (iii), estimating the Qanadli score; and (iv), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R2) for the Qanadli score and the RV/LV diameter ratio. Results: Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850-0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810-0.890) on the test set. Regression analysis yielded R2 value of 0.717 (95% CI: 0.668-0.760) and of 0.723 (95% CI: 0.668-0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set. Conclusion: This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice. (c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [41] Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
    Andra-Iza Iuga
    Heike Carolus
    Anna J. Höink
    Tom Brosch
    Tobias Klinder
    David Maintz
    Thorsten Persigehl
    Bettina Baeßler
    Michael Püsken
    BMC Medical Imaging, 21
  • [42] Domain adaptive and fully automated carotid artery atherosclerotic lesion detection using an artificial intelligence approach (LATTE) on 3D MRI
    Chen, Li
    Zhao, Huilin
    Jiang, Hongjian
    Balu, Niranjan
    Geleri, Duygu Baylam
    Chu, Baocheng
    Watase, Hiroko
    Zhao, Xihai
    Li, Rui
    Xu, Jianrong
    Hatsukami, Thomas S.
    Xu, Dongxiang
    Hwang, Jenq-Neng
    Yuan, Chun
    MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (03) : 1662 - 1673
  • [43] Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs
    Ramezanzade, Shaqayeq
    Dascalu, Tudor Laurentiu
    Ibragimov, Bulat
    Bakhshandeh, Azam
    Bj, Lars
    JOURNAL OF DENTISTRY, 2023, 138
  • [44] Development and validation of a reliable method for automated measurements of psoas muscle volume in CT scans using deep learning-based segmentation: a cross-sectional study
    Choi, Woorim
    Kim, Chul-Ho
    Yoo, Hyein
    Yun, Hee Rim
    Kim, Da-Wit
    Kim, Ji Wan
    BMJ OPEN, 2024, 14 (05):
  • [45] A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
    Uemura, Tomoki
    Nappi, Janne J.
    Ryu, Yasuji
    Watari, Chinatsu
    Kamiya, Tohru
    Yoshida, Hiroyuki
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (01) : 81 - 89
  • [46] Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP a 3T: evaluation of image quality and acquisition time
    Shiraishi, Kaori
    Nakaura, Takeshi
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Kobayashi, Naoki
    Morita, Kosuke
    Yamahita, Yuichi
    Tanaka, Yasuhito
    Baba, Hideo
    Hirai, Toshinori
    EUROPEAN RADIOLOGY, 2023, 33 (11) : 7585 - 7594
  • [47] A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
    Tomoki Uemura
    Janne J. Näppi
    Yasuji Ryu
    Chinatsu Watari
    Tohru Kamiya
    Hiroyuki Yoshida
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 81 - 89
  • [48] Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset
    Frazer, Helen M. L.
    Qin, Alex K.
    Pan, Hong
    Brotchie, Peter
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) : 529 - 537
  • [49] Development And Validation Of A Deep Machine Learning Tool For Automated Intraventricular Hemorrhage Segmentation And Volume Measurement Using 3d Convolutional Neural Networks
    Wong, Alexander
    Baig, Saif
    Chen Zejia
    Volders, David
    Huynh, Thien
    STROKE, 2022, 53
  • [50] Automatic 3D cell segmentation of fruit parenchyma tissue from X-ray micro CT images using deep learning
    Van Doorselaer, Leen
    Verboven, Pieter
    Nicolai, Bart
    PLANT METHODS, 2024, 20 (01)