Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution

被引:6
|
作者
Djahnine, Aissam [1 ,2 ]
Lazarus, Carole [1 ]
Lederlin, Mathieu [3 ]
Mule, Sebastien [4 ,5 ]
Wiemker, Rafael [1 ]
Si-Mohamed, Salim [6 ]
Jupin-Delevaux, Emilien [6 ]
Nempont, Olivier [1 ]
Skandarani, Youssef [1 ]
De Craene, Mathieu [1 ]
Goubalan, Segbedji [1 ]
Raynaud, Caroline [1 ]
Belkouchi, Younes [7 ,8 ]
Ben Afia, Amira [8 ]
Fabre, Clement [10 ]
Ferretti, Gilbert [11 ]
De Margerie, Constance [12 ,13 ]
Berge, Pierre [14 ]
Liberge, Renan [15 ]
Elbaz, Nicolas [16 ]
Blain, Maxime [17 ]
Brillet, Pierre -Yves [18 ]
Chassagnon, Guillaume [12 ,19 ]
Cadour, Farah [20 ]
Caramella, Caroline [21 ]
El Hajjam, Mostafa [22 ]
Boussouar, Samia [23 ]
Hadchiti, Joya [24 ]
Fablet, Xavier [3 ]
Khalil, Antoine [9 ]
Talbot, Hugues [8 ]
Luciani, Alain [4 ,5 ]
Lassau, Nathalie [24 ]
Boussel, Loic [2 ,6 ]
机构
[1] Philips Res France, F-92150 Suresnes, France
[2] Univ Claude Bernard Lyon 1, CREATIS, INSA Lyon, UJM St Etienne,NRS,Inserm,CREATIS UMR 5220,U1294, Lyon, France
[3] CHU Rennes, Dept Radiol, F-35000 Rennes, France
[4] Henri Mondor Univ Hosp, Med Imaging Dept, AP HP, Creteil, France
[5] Inserm, Team 18, U955, F-94000 Creteil, France
[6] Hosp Civils Lyon, Dept Radiol, F-69500 Lyon, France
[7] Univ Paris Saclay, BIOMAPS, CNRS,CEA,UMR 1281, Inserm,Lab Imagerie Biomed Multimodale Paris Sacl, F-94800 Villejuif, France
[8] Univ Paris Saclay, CVN Ctr vis Numer, OPTS Optimisat Imagerie & Sante, Inria,CentraleSupelec, F-91190 Gif Sur Yvette, France
[9] Hop Bichat Claude Bernard, Dept Radiol, APHP Nord, F-75018 Paris, France
[10] Ctr Hosp Laval, Dept Radiol, F-53000 Laval, France
[11] Univ Grenobles Alpes, Serv Radiol & Imagerie Med, F-38000 Grenoble, France
[12] Univ Paris Cite, F-75006 Paris, France
[13] Hop St Louis, AP HP, Dept Radiol, F-75010 Paris, France
[14] CHU Angers, Dept Radiol, Angers, France
[15] CHU Nantes, Dept Radiol, F-44000 Nantes, France
[16] Hop Europeen Georges Pompidou, Dept Radiol, AP HP, F-75015 Paris, France
[17] Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[18] Paris 13 Univ, Hop Avicenne, Dept Radiol, F-93000 Bobigny, France
[19] Hop Cochin, Dept Radiol, APHP, F-75014 Paris, France
[20] Hop Univ Timone, APHM, CEMEREM, F-13005 Marseille, France
[21] Grp Hosp Paris St Joseph, Dept Radiol, F-75015 Paris, France
[22] Hop Ambroise Pare Hosp, Dept Radiol, Team 3, UVSQ,UMR 1179,INSERM, Boulogne Billancourt, France
[23] Sorbonne Univ, Hop La Pitie Salpetriere, Unite Imagerie Cardiovasc & Thorac ICT, UMRS 1166, F-75013 Paris, France
[24] Univ Paris Saclay, Inst Gustave Roussy, Dept Imaging, F-94800 Villejuif, France
关键词
Artificial intelligence; Pulmonary embolism; Qanadli score; Retina U-net; R-CNN; INTELLIGENCE;
D O I
10.1016/j.diii.2023.09.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations. Materials and methods: Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (i), detecting blood clots; (ii), performing PE-positive versus negative classification; (iii), estimating the Qanadli score; and (iv), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R2) for the Qanadli score and the RV/LV diameter ratio. Results: Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850-0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810-0.890) on the test set. Regression analysis yielded R2 value of 0.717 (95% CI: 0.668-0.760) and of 0.723 (95% CI: 0.668-0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set. Conclusion: This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice. (c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [31] Deep learning-based instance segmentation on 3D laser triangulation data for inline monitoring of particle size distributions in construction and demolition waste recycling
    Wu, Xiaoye
    Kroell, Nils
    Greiff, Kathrin
    RESOURCES CONSERVATION AND RECYCLING, 2024, 205
  • [32] Generalizable deep learning framework for 3D medical image segmentation using limited training data
    Ekman, Tobias
    Barakat, Arthur
    Heiberg, Einar
    3D PRINTING IN MEDICINE, 2025, 11 (01)
  • [33] H3DNN: 3D DEEP LEARNING BASED DETECTION OF COVID-19 VIRUS USING LUNGS COMPUTED TOMOGRAPHY
    Khan, Abdullah Aman
    Shafiq, Sidra
    Kumar, Rajesh
    Kumar, Jay
    Ul Haq, Amin
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 183 - 186
  • [34] AI Somatotype System Using 3D Body Images: Based on Deep-Learning and Transfer Learning
    Yoon, Jiwun
    Lee, Sang-Yong
    Lee, Ji-Yong
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [35] Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings
    Weikert, Thomas
    Rapaka, Saikiran
    Grbic, Sasa
    Re, Thomas
    Chaganti, Shikha
    Winkel, David J.
    Anastasopoulos, Constantin
    Niemann, Tilo
    Wiggli, Benedikt J.
    Bremerich, Jens
    Twerenbold, Raphael
    Sommer, Gregor
    Comaniciu, Dorin
    Sauter, Alexander W.
    KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (06) : 994 - 1004
  • [36] Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study
    Li, Yuanyuan
    Zhang, Huiling
    Sun, Yun
    Fan, Qianrui
    Wang, Long
    Ji, Congshan
    HuiGu
    Chen, Baojin
    Zhao, Shuo
    Wang, Dawei
    Yu, Pengxin
    Li, Junchen
    Yang, Shifeng
    Zhang, Chuanchen
    Wang, Ximing
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 188
  • [37] Automated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning network
    van der Heyden, Brent
    van de Worp, Wouter R. P. H.
    van Helvoort, Ardy
    Theys, Jan
    Schols, Annemie M. W. J.
    Langen, Ramon C. J.
    Verhaegen, Frank
    JOURNAL OF APPLIED PHYSIOLOGY, 2020, 128 (01) : 42 - 49
  • [38] Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
    Iuga, Andra-Iza
    Carolus, Heike
    Hoeink, Anna J.
    Brosch, Tom
    Klinder, Tobias
    Maintz, David
    Persigehl, Thorsten
    Baessler, Bettina
    Puesken, Michael
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [39] Validation of deep learning-based fully automated coronary artery calcium scoring using non-ECG-gated chest CT in patients with cancer
    Choi, Joo Hyeok
    Cha, Min Jae
    Cho, Iksung
    Kim, William D.
    Ha, Yera
    Choi, Hyewon
    Lee, Sun Hwa
    You, Seng Chan
    Chang, Jee Suk
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [40] Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model-Establishment and Addition to Laser Speckle Contrast Imaging (LSCI)
    Kuri, Paulina Mena
    Pion, Eric
    Mahl, Lina
    Kainz, Philipp
    Schwarz, Siegfried
    Brochhausen, Christoph
    Aung, Thiha
    Haerteis, Silke
    CELLS, 2022, 11 (15)