Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution

被引:6
|
作者
Djahnine, Aissam [1 ,2 ]
Lazarus, Carole [1 ]
Lederlin, Mathieu [3 ]
Mule, Sebastien [4 ,5 ]
Wiemker, Rafael [1 ]
Si-Mohamed, Salim [6 ]
Jupin-Delevaux, Emilien [6 ]
Nempont, Olivier [1 ]
Skandarani, Youssef [1 ]
De Craene, Mathieu [1 ]
Goubalan, Segbedji [1 ]
Raynaud, Caroline [1 ]
Belkouchi, Younes [7 ,8 ]
Ben Afia, Amira [8 ]
Fabre, Clement [10 ]
Ferretti, Gilbert [11 ]
De Margerie, Constance [12 ,13 ]
Berge, Pierre [14 ]
Liberge, Renan [15 ]
Elbaz, Nicolas [16 ]
Blain, Maxime [17 ]
Brillet, Pierre -Yves [18 ]
Chassagnon, Guillaume [12 ,19 ]
Cadour, Farah [20 ]
Caramella, Caroline [21 ]
El Hajjam, Mostafa [22 ]
Boussouar, Samia [23 ]
Hadchiti, Joya [24 ]
Fablet, Xavier [3 ]
Khalil, Antoine [9 ]
Talbot, Hugues [8 ]
Luciani, Alain [4 ,5 ]
Lassau, Nathalie [24 ]
Boussel, Loic [2 ,6 ]
机构
[1] Philips Res France, F-92150 Suresnes, France
[2] Univ Claude Bernard Lyon 1, CREATIS, INSA Lyon, UJM St Etienne,NRS,Inserm,CREATIS UMR 5220,U1294, Lyon, France
[3] CHU Rennes, Dept Radiol, F-35000 Rennes, France
[4] Henri Mondor Univ Hosp, Med Imaging Dept, AP HP, Creteil, France
[5] Inserm, Team 18, U955, F-94000 Creteil, France
[6] Hosp Civils Lyon, Dept Radiol, F-69500 Lyon, France
[7] Univ Paris Saclay, BIOMAPS, CNRS,CEA,UMR 1281, Inserm,Lab Imagerie Biomed Multimodale Paris Sacl, F-94800 Villejuif, France
[8] Univ Paris Saclay, CVN Ctr vis Numer, OPTS Optimisat Imagerie & Sante, Inria,CentraleSupelec, F-91190 Gif Sur Yvette, France
[9] Hop Bichat Claude Bernard, Dept Radiol, APHP Nord, F-75018 Paris, France
[10] Ctr Hosp Laval, Dept Radiol, F-53000 Laval, France
[11] Univ Grenobles Alpes, Serv Radiol & Imagerie Med, F-38000 Grenoble, France
[12] Univ Paris Cite, F-75006 Paris, France
[13] Hop St Louis, AP HP, Dept Radiol, F-75010 Paris, France
[14] CHU Angers, Dept Radiol, Angers, France
[15] CHU Nantes, Dept Radiol, F-44000 Nantes, France
[16] Hop Europeen Georges Pompidou, Dept Radiol, AP HP, F-75015 Paris, France
[17] Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[18] Paris 13 Univ, Hop Avicenne, Dept Radiol, F-93000 Bobigny, France
[19] Hop Cochin, Dept Radiol, APHP, F-75014 Paris, France
[20] Hop Univ Timone, APHM, CEMEREM, F-13005 Marseille, France
[21] Grp Hosp Paris St Joseph, Dept Radiol, F-75015 Paris, France
[22] Hop Ambroise Pare Hosp, Dept Radiol, Team 3, UVSQ,UMR 1179,INSERM, Boulogne Billancourt, France
[23] Sorbonne Univ, Hop La Pitie Salpetriere, Unite Imagerie Cardiovasc & Thorac ICT, UMRS 1166, F-75013 Paris, France
[24] Univ Paris Saclay, Inst Gustave Roussy, Dept Imaging, F-94800 Villejuif, France
关键词
Artificial intelligence; Pulmonary embolism; Qanadli score; Retina U-net; R-CNN; INTELLIGENCE;
D O I
10.1016/j.diii.2023.09.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations. Materials and methods: Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (i), detecting blood clots; (ii), performing PE-positive versus negative classification; (iii), estimating the Qanadli score; and (iv), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R2) for the Qanadli score and the RV/LV diameter ratio. Results: Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850-0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810-0.890) on the test set. Regression analysis yielded R2 value of 0.717 (95% CI: 0.668-0.760) and of 0.723 (95% CI: 0.668-0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set. Conclusion: This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice. (c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [21] Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS)
    Gu, Shangzhi
    Wang, Lixue
    Han, Rong
    Liu, Xiaohong
    Wang, Yizhe
    Chen, Ting
    Zheng, Zhuozhao
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [22] Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study
    Tuomas Vainio
    Teemu Mäkelä
    Sauli Savolainen
    Marko Kangasniemi
    European Radiology Experimental, 5
  • [23] Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study
    Vainio, Tuomas
    Makela, Teemu
    Savolainen, Sauli
    Kangasniemi, Marko
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
  • [24] Accuracy of spiral CT and 3D reconstruction in the detection of acute pulmonary embolism - development of an animal model using porcine lungs and technical specimens
    Ries, BG
    Kauczor, HU
    Konerding, MA
    Thelen, M
    RADIOLOGE, 2001, 41 (02): : 187 - +
  • [25] A Cascaded Deep Learning-Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Sanford, Thomas H.
    Kesani, Deepak
    Lay, Nathan S.
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ACADEMIC RADIOLOGY, 2022, 29 (08) : 1159 - 1168
  • [26] Fully automated quantification of cardiac chamber and function assessment in 2-D echocardiography: clinical feasibility of deep learning-based algorithms
    Kim, Sekeun
    Park, Hyung-Bok
    Jeon, Jaeik
    Arsanjani, Reza
    Heo, Ran
    Lee, Sang-Eun
    Moon, Inki
    Yoo, Sun Kook
    Chang, Hyuk-Jae
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2022, 38 (05) : 1047 - 1059
  • [27] Design and evaluation of a deep learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net
    Melerowitz, L.
    Sreenivasa, S.
    Nachbar, M.
    Stsefanenka, A.
    Beck, M.
    Senger, C.
    Predescu, N.
    Akram, S. Ullah
    Budach, V.
    Zips, D.
    Heiland, M.
    Nahles, S.
    Stromberger, C.
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 47
  • [28] Automated CT Lung Density Analysis of Viral Pneumonia and Healthy Lungs Using Deep Learning-Based Segmentation, Histograms and HU Thresholds
    Romanov, Andrej
    Bach, Michael
    Yang, Shan
    Franzeck, Fabian C.
    Sommer, Gregor
    Anastasopoulos, Constantin
    Bremerich, Jens
    Stieltjes, Bram
    Weikert, Thomas
    Sauter, Alexander Walter
    DIAGNOSTICS, 2021, 11 (05)
  • [29] Deep learning-based automated quantification of goblet cell mucus using histological images as a predictor of clinical relapse of ulcerative colitis with endoscopic remission
    Ohara, Jun
    Nemoto, Tetsuo
    Maeda, Yasuharu
    Ogata, Noriyuki
    Kudo, Shin-Ei
    Yamochi, Toshiko
    JOURNAL OF GASTROENTEROLOGY, 2022, 57 (12) : 962 - 970
  • [30] Deep learning-based automated quantification of goblet cell mucus using histological images as a predictor of clinical relapse of ulcerative colitis with endoscopic remission
    Jun Ohara
    Tetsuo Nemoto
    Yasuharu Maeda
    Noriyuki Ogata
    Shin-ei Kudo
    Toshiko Yamochi
    Journal of Gastroenterology, 2022, 57 : 962 - 970